{"title":"林地火灾传播模型参数标定的确定性优化技术","authors":"M. H. Tchiekre, A. Brou, J. Adou","doi":"10.5802/crmeca.58","DOIUrl":null,"url":null,"abstract":"To fight against forest fires, simple and improved models are more searched out due to the fact they are more easily understandable by the users. This actual model is part of the fire propagation models within a network. It is simple and easy to implement. However, it depends on several parameters that are difficult to measure or estimate precisely beforehand. The prediction by this model is therefore insufficient. A deterministic optimization method is introduced to calibrate its parameters. The optimized model was tested on several laboratory experiments and on two large-scale experimental fires. The comparison of the model results with those of the experiment shows a very significant improvement in its prediction with the optimal parameters. Résumé. Dans la lutte contre les feux de forêt, les modèles simples et améliorés sont plus recherchés car plus aisément compréhensibles par les utilisateurs. Le présent modèle fait partie des modèles de propagation de feu à l’intérieur d’un réseau. Il est simple et facile à mettre en œuvre. Cependant, il dépend de plusieurs paramètres difficiles à mesurer ou à estimer avec précision au préalable. La prédiction par ce modèle est de ce fait insuffisante. Par conséquent, une méthode déterministe d’optimisation est introduite pour calibrer ses paramètres. Le modèle optimisé a été testé sur plusieurs feux de laboratoires et sur deux feux expérimentaux à grande échelle. La comparaison des résultats du modèle avec ceux de l’expérience montre une amélioration très significative de sa prédiction avec les paramètres optimaux.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"175 1","pages":"759-768"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model\",\"authors\":\"M. H. Tchiekre, A. Brou, J. Adou\",\"doi\":\"10.5802/crmeca.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fight against forest fires, simple and improved models are more searched out due to the fact they are more easily understandable by the users. This actual model is part of the fire propagation models within a network. It is simple and easy to implement. However, it depends on several parameters that are difficult to measure or estimate precisely beforehand. The prediction by this model is therefore insufficient. A deterministic optimization method is introduced to calibrate its parameters. The optimized model was tested on several laboratory experiments and on two large-scale experimental fires. The comparison of the model results with those of the experiment shows a very significant improvement in its prediction with the optimal parameters. Résumé. Dans la lutte contre les feux de forêt, les modèles simples et améliorés sont plus recherchés car plus aisément compréhensibles par les utilisateurs. Le présent modèle fait partie des modèles de propagation de feu à l’intérieur d’un réseau. Il est simple et facile à mettre en œuvre. Cependant, il dépend de plusieurs paramètres difficiles à mesurer ou à estimer avec précision au préalable. La prédiction par ce modèle est de ce fait insuffisante. Par conséquent, une méthode déterministe d’optimisation est introduite pour calibrer ses paramètres. Le modèle optimisé a été testé sur plusieurs feux de laboratoires et sur deux feux expérimentaux à grande échelle. La comparaison des résultats du modèle avec ceux de l’expérience montre une amélioration très significative de sa prédiction avec les paramètres optimaux.\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"175 1\",\"pages\":\"759-768\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/crmeca.58\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/crmeca.58","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model
To fight against forest fires, simple and improved models are more searched out due to the fact they are more easily understandable by the users. This actual model is part of the fire propagation models within a network. It is simple and easy to implement. However, it depends on several parameters that are difficult to measure or estimate precisely beforehand. The prediction by this model is therefore insufficient. A deterministic optimization method is introduced to calibrate its parameters. The optimized model was tested on several laboratory experiments and on two large-scale experimental fires. The comparison of the model results with those of the experiment shows a very significant improvement in its prediction with the optimal parameters. Résumé. Dans la lutte contre les feux de forêt, les modèles simples et améliorés sont plus recherchés car plus aisément compréhensibles par les utilisateurs. Le présent modèle fait partie des modèles de propagation de feu à l’intérieur d’un réseau. Il est simple et facile à mettre en œuvre. Cependant, il dépend de plusieurs paramètres difficiles à mesurer ou à estimer avec précision au préalable. La prédiction par ce modèle est de ce fait insuffisante. Par conséquent, une méthode déterministe d’optimisation est introduite pour calibrer ses paramètres. Le modèle optimisé a été testé sur plusieurs feux de laboratoires et sur deux feux expérimentaux à grande échelle. La comparaison des résultats du modèle avec ceux de l’expérience montre une amélioration très significative de sa prédiction avec les paramètres optimaux.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.