Ray Lattarulo, E. Martí, M. Marcano, Jose A. Matute, Joshué Pérez
{"title":"一种考虑车辆动力学约束和乘客舒适度的bassazier曲线速度规划方法","authors":"Ray Lattarulo, E. Martí, M. Marcano, Jose A. Matute, Joshué Pérez","doi":"10.1109/ISCAS.2018.8351307","DOIUrl":null,"url":null,"abstract":"This paper presents a speed profile generation approach for longitudinal control of automated vehicles, based on quintic Bézier curves. The described method aims to increase comfort level of passengers based on the ISO2631-1 specification, while taking into account vehicle dynamics and traffic rules to keep high safety levels. The algorithm has been tested in an in-house tool for high accuracy vehicle dynamics simulations, called Dynacar. The considered scenario is a closed circuit inside Tecnalia facilities. The resulting profile has better properties (for example, rate of change) than a raw input based on traffic speed limits. When used as reference for the speed controller, it improves both comfort and safety.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"26 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Speed Planner Approach Based On Bézier Curves Using Vehicle Dynamic Constrains and Passengers Comfort\",\"authors\":\"Ray Lattarulo, E. Martí, M. Marcano, Jose A. Matute, Joshué Pérez\",\"doi\":\"10.1109/ISCAS.2018.8351307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a speed profile generation approach for longitudinal control of automated vehicles, based on quintic Bézier curves. The described method aims to increase comfort level of passengers based on the ISO2631-1 specification, while taking into account vehicle dynamics and traffic rules to keep high safety levels. The algorithm has been tested in an in-house tool for high accuracy vehicle dynamics simulations, called Dynacar. The considered scenario is a closed circuit inside Tecnalia facilities. The resulting profile has better properties (for example, rate of change) than a raw input based on traffic speed limits. When used as reference for the speed controller, it improves both comfort and safety.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"26 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Speed Planner Approach Based On Bézier Curves Using Vehicle Dynamic Constrains and Passengers Comfort
This paper presents a speed profile generation approach for longitudinal control of automated vehicles, based on quintic Bézier curves. The described method aims to increase comfort level of passengers based on the ISO2631-1 specification, while taking into account vehicle dynamics and traffic rules to keep high safety levels. The algorithm has been tested in an in-house tool for high accuracy vehicle dynamics simulations, called Dynacar. The considered scenario is a closed circuit inside Tecnalia facilities. The resulting profile has better properties (for example, rate of change) than a raw input based on traffic speed limits. When used as reference for the speed controller, it improves both comfort and safety.