A. Hanif, E. Frost, Fei Le, M. Nikitenko, Mikhail Blinov, N. Velker
{"title":"一个快速的人工神经网络训练求解器可以实时径向反演介电色散数据,并在具有挑战性的环境中准确估计储量","authors":"A. Hanif, E. Frost, Fei Le, M. Nikitenko, Mikhail Blinov, N. Velker","doi":"10.2118/204904-ms","DOIUrl":null,"url":null,"abstract":"\n Dielectric dispersion measurements are increasingly used by petrophysicists to reduce uncertainty in their hydrocarbon saturation analysis, and subsequent reserves estimation, especially when encountered with challenging environments. Some of these challenges are related to variable or unknown formation water salinity and/or a changing rock texture which is a common attribute of carbonate reservoirs found in the Middle East. A new multi-frequency, multi-spacing dielectric logging service, utilizes a sensor array scheme which provides wave attenuation and phase difference measurements at multiple depths of investigation up to 8 inches inside the formation. The improvement in depth of investigation provides a better measurement of true formation properties, however, also provides a higher likelihood of measuring radial heterogeneity due to spatially variable shallow mud-filtrate invasion. Meaningful petrophysical interpretation requires an accurate electromagnetic (EM) inversion, which accommodates this heterogeneity, while converting raw tool measurements to true formation dielectric properties.\n Forward modeling solvers are typically beset with a slow processing speed precluding use of complex, albeit representative, formation petrophysical models. An artificial neural network (ANN) has been trained to significantly speed up the forward solver, thus leading to implementation and real-time execution of a complex multi-layer radial inversion algorithm. The paper describes, in detail, the development, training and validation of both the ANN network and the inversion algorithm.\n The presented algorithm and ANN inversion has shown ability to accurately resolve mud filtrate invasion profile as well as the true formation properties of individual layers. Examples are presented which demonstrate that comprehensive, multi-frequency, multi-array, EM data sets are inverted efficiently for dis-similar dielectric properties of both invaded and non-invaded formation layers around the wellbore. The results are further utilized for accurate hydrocarbon quantification otherwise not achieved by conventional resistivity based saturation techniques.\n This paper presents the development of a new EM inversion algorithm and an artificial neural network (ANN) trained to significantly speed up the solution of this algorithm. This approach leads to a fast turnaround for an accurate petrophysical analysis, reserves estimate and completion decisions.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast ANN Trained Solver Enables Real-Time Radial Inversion of Dielectric Dispersion Data & Accurate Estimate of Reserves in Challenging Environments\",\"authors\":\"A. Hanif, E. Frost, Fei Le, M. Nikitenko, Mikhail Blinov, N. Velker\",\"doi\":\"10.2118/204904-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dielectric dispersion measurements are increasingly used by petrophysicists to reduce uncertainty in their hydrocarbon saturation analysis, and subsequent reserves estimation, especially when encountered with challenging environments. Some of these challenges are related to variable or unknown formation water salinity and/or a changing rock texture which is a common attribute of carbonate reservoirs found in the Middle East. A new multi-frequency, multi-spacing dielectric logging service, utilizes a sensor array scheme which provides wave attenuation and phase difference measurements at multiple depths of investigation up to 8 inches inside the formation. The improvement in depth of investigation provides a better measurement of true formation properties, however, also provides a higher likelihood of measuring radial heterogeneity due to spatially variable shallow mud-filtrate invasion. Meaningful petrophysical interpretation requires an accurate electromagnetic (EM) inversion, which accommodates this heterogeneity, while converting raw tool measurements to true formation dielectric properties.\\n Forward modeling solvers are typically beset with a slow processing speed precluding use of complex, albeit representative, formation petrophysical models. An artificial neural network (ANN) has been trained to significantly speed up the forward solver, thus leading to implementation and real-time execution of a complex multi-layer radial inversion algorithm. The paper describes, in detail, the development, training and validation of both the ANN network and the inversion algorithm.\\n The presented algorithm and ANN inversion has shown ability to accurately resolve mud filtrate invasion profile as well as the true formation properties of individual layers. Examples are presented which demonstrate that comprehensive, multi-frequency, multi-array, EM data sets are inverted efficiently for dis-similar dielectric properties of both invaded and non-invaded formation layers around the wellbore. The results are further utilized for accurate hydrocarbon quantification otherwise not achieved by conventional resistivity based saturation techniques.\\n This paper presents the development of a new EM inversion algorithm and an artificial neural network (ANN) trained to significantly speed up the solution of this algorithm. This approach leads to a fast turnaround for an accurate petrophysical analysis, reserves estimate and completion decisions.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204904-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204904-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast ANN Trained Solver Enables Real-Time Radial Inversion of Dielectric Dispersion Data & Accurate Estimate of Reserves in Challenging Environments
Dielectric dispersion measurements are increasingly used by petrophysicists to reduce uncertainty in their hydrocarbon saturation analysis, and subsequent reserves estimation, especially when encountered with challenging environments. Some of these challenges are related to variable or unknown formation water salinity and/or a changing rock texture which is a common attribute of carbonate reservoirs found in the Middle East. A new multi-frequency, multi-spacing dielectric logging service, utilizes a sensor array scheme which provides wave attenuation and phase difference measurements at multiple depths of investigation up to 8 inches inside the formation. The improvement in depth of investigation provides a better measurement of true formation properties, however, also provides a higher likelihood of measuring radial heterogeneity due to spatially variable shallow mud-filtrate invasion. Meaningful petrophysical interpretation requires an accurate electromagnetic (EM) inversion, which accommodates this heterogeneity, while converting raw tool measurements to true formation dielectric properties.
Forward modeling solvers are typically beset with a slow processing speed precluding use of complex, albeit representative, formation petrophysical models. An artificial neural network (ANN) has been trained to significantly speed up the forward solver, thus leading to implementation and real-time execution of a complex multi-layer radial inversion algorithm. The paper describes, in detail, the development, training and validation of both the ANN network and the inversion algorithm.
The presented algorithm and ANN inversion has shown ability to accurately resolve mud filtrate invasion profile as well as the true formation properties of individual layers. Examples are presented which demonstrate that comprehensive, multi-frequency, multi-array, EM data sets are inverted efficiently for dis-similar dielectric properties of both invaded and non-invaded formation layers around the wellbore. The results are further utilized for accurate hydrocarbon quantification otherwise not achieved by conventional resistivity based saturation techniques.
This paper presents the development of a new EM inversion algorithm and an artificial neural network (ANN) trained to significantly speed up the solution of this algorithm. This approach leads to a fast turnaround for an accurate petrophysical analysis, reserves estimate and completion decisions.