Michael Hollenbeck, R. Smith, Clinton Cathey, Janos Opra
{"title":"x波段集成印刷天线测量","authors":"Michael Hollenbeck, R. Smith, Clinton Cathey, Janos Opra","doi":"10.1109/MWSYM.2018.8439526","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (aka 3D printing) in metals allows for the design and fabrication of integrated antenna structures that reduce part count and improve performance. This paper investigates the performance of an integrated feed design for a parabolic reflector that supports both left-hand and right-hand circular polarizations with a separate OMT, manufactured using additive manufacturing in AlSil0Mg with a Powder Bed Fusion process. The subreflector, subreflector support, feed horn, polarizer, and circular waveguide input are all printed as a single structure that eliminates typical blockage from subreflector support structures and allows for ease of assembly. Measured patterns show high levels of pattern symmetry in Azimuth and Elevation, and two separate printed antenna and OMT pairs show good precision without the need for any secondary tuning steps during assembly.","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"41 1","pages":"149-151"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"X-band Integrated Printed Antenna Measurement\",\"authors\":\"Michael Hollenbeck, R. Smith, Clinton Cathey, Janos Opra\",\"doi\":\"10.1109/MWSYM.2018.8439526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (aka 3D printing) in metals allows for the design and fabrication of integrated antenna structures that reduce part count and improve performance. This paper investigates the performance of an integrated feed design for a parabolic reflector that supports both left-hand and right-hand circular polarizations with a separate OMT, manufactured using additive manufacturing in AlSil0Mg with a Powder Bed Fusion process. The subreflector, subreflector support, feed horn, polarizer, and circular waveguide input are all printed as a single structure that eliminates typical blockage from subreflector support structures and allows for ease of assembly. Measured patterns show high levels of pattern symmetry in Azimuth and Elevation, and two separate printed antenna and OMT pairs show good precision without the need for any secondary tuning steps during assembly.\",\"PeriodicalId\":6675,\"journal\":{\"name\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"volume\":\"41 1\",\"pages\":\"149-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2018.8439526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additive manufacturing (aka 3D printing) in metals allows for the design and fabrication of integrated antenna structures that reduce part count and improve performance. This paper investigates the performance of an integrated feed design for a parabolic reflector that supports both left-hand and right-hand circular polarizations with a separate OMT, manufactured using additive manufacturing in AlSil0Mg with a Powder Bed Fusion process. The subreflector, subreflector support, feed horn, polarizer, and circular waveguide input are all printed as a single structure that eliminates typical blockage from subreflector support structures and allows for ease of assembly. Measured patterns show high levels of pattern symmetry in Azimuth and Elevation, and two separate printed antenna and OMT pairs show good precision without the need for any secondary tuning steps during assembly.