带梯度项的边界爆破拟线性椭圆问题解的存在性及边界行为

Chunlian Liu
{"title":"带梯度项的边界爆破拟线性椭圆问题解的存在性及边界行为","authors":"Chunlian Liu","doi":"10.7153/DEA-2021-13-16","DOIUrl":null,"url":null,"abstract":". In this paper, by sub-supersolution methods, Karamata regular variation theory and perturbation method, we study the existence, uniqueness and asymptotic behavior of solutions near the boundary to quasilinear elliptic problem where Ω is a bounded domain with smooth boundary in R N ( N (cid:2) 2 ) , 1 < m (cid:3) 2, 0 < q (cid:3) m / ( m − 1 ) . b ∈ C α ( Ω )( α ∈ ( 0 , 1 )) is positive in Ω , and may be vanishing on the boundary, and f ∈ C 1 [ 0 , + ∞ ) , f ( 0 ) = 0, is increase on ( 0 , + ∞ ) and normalized regularly varying at in fi nity with positive index p and p +( q − 1 )( m − 1 ) > 0.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"47 1","pages":"281-295"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and boundary behavior of solutions for boundary blow-up quasilinear elliptic problems with gradient terms\",\"authors\":\"Chunlian Liu\",\"doi\":\"10.7153/DEA-2021-13-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, by sub-supersolution methods, Karamata regular variation theory and perturbation method, we study the existence, uniqueness and asymptotic behavior of solutions near the boundary to quasilinear elliptic problem where Ω is a bounded domain with smooth boundary in R N ( N (cid:2) 2 ) , 1 < m (cid:3) 2, 0 < q (cid:3) m / ( m − 1 ) . b ∈ C α ( Ω )( α ∈ ( 0 , 1 )) is positive in Ω , and may be vanishing on the boundary, and f ∈ C 1 [ 0 , + ∞ ) , f ( 0 ) = 0, is increase on ( 0 , + ∞ ) and normalized regularly varying at in fi nity with positive index p and p +( q − 1 )( m − 1 ) > 0.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"47 1\",\"pages\":\"281-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2021-13-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 本文利用次超解方法、Karamata正则变分理论和摄动方法,研究了拟线性椭圆型问题的边界附近解的存在唯一性和渐近性,其中Ω是R N (N (cid:2) 2)、1 < m (cid:3) 2,0 < q (cid:3) m / (m−1)的光滑边界有界区域。b∈C α (Ω)(α∈(0,1))在Ω上是正的,并且可能在边界上消失,f∈C 1[0, +∞),f(0) = 0,在(0,+∞)上是递增的,并且在无穷大处归一化规律变化,正指标p且p +(q−1)(m−1)> 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and boundary behavior of solutions for boundary blow-up quasilinear elliptic problems with gradient terms
. In this paper, by sub-supersolution methods, Karamata regular variation theory and perturbation method, we study the existence, uniqueness and asymptotic behavior of solutions near the boundary to quasilinear elliptic problem where Ω is a bounded domain with smooth boundary in R N ( N (cid:2) 2 ) , 1 < m (cid:3) 2, 0 < q (cid:3) m / ( m − 1 ) . b ∈ C α ( Ω )( α ∈ ( 0 , 1 )) is positive in Ω , and may be vanishing on the boundary, and f ∈ C 1 [ 0 , + ∞ ) , f ( 0 ) = 0, is increase on ( 0 , + ∞ ) and normalized regularly varying at in fi nity with positive index p and p +( q − 1 )( m − 1 ) > 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信