{"title":"高温可操作的低湿度(10至20%RH)传感器使用自旋涂覆SnO2薄膜","authors":"Pramod Kori, Vipul Dhongade, R. Aiyer","doi":"10.1109/ISPTS.2015.7220112","DOIUrl":null,"url":null,"abstract":"The paper presents Tin oxide (SnO<sub>2</sub>) based low cost, high temperature operable resistive type low humidity (10-20%RH) sensor. SnO<sub>2</sub> thin films were prepared by spin coating 50 μl of synthesized (SnCl<sub>2</sub>) solution on alumina substrate (1.44 cm<sup>2</sup>). Material characterization of the synthesized material was carried out using UV-Visible, SEM and XRD. To get films of higher thickness they were coated from 1 to 4 layers and annealed in the furnace at an optimized temperature of 550°C for ~1 hour. Obtained SnO<sub>2</sub> thin films were tested for change in resistance w.r.t. humidity from 10 to 20% RH at 200°C and 300°C to be used in boilers. Samples have low hysteresis (~12%) with recovery time of about ~10 sec. They have shown good repeatability (5%). The sensitivity of tested films was found to increase with respect to number of SnO<sub>2</sub> layers. Sensitivity of 2 layered film operating at 200°C is 146 Ω/%RH and that of 4 layered film is 314 Ω/%RH, likewise at 300 °C the sensitivity of the films are 165 Ω/%RH and 323 Ω/%RH respectively.","PeriodicalId":6520,"journal":{"name":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","volume":"35 1","pages":"200-203"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High temperature operable low humidity (10 to 20%RH) sensor using spin coated SnO2 thin films\",\"authors\":\"Pramod Kori, Vipul Dhongade, R. Aiyer\",\"doi\":\"10.1109/ISPTS.2015.7220112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents Tin oxide (SnO<sub>2</sub>) based low cost, high temperature operable resistive type low humidity (10-20%RH) sensor. SnO<sub>2</sub> thin films were prepared by spin coating 50 μl of synthesized (SnCl<sub>2</sub>) solution on alumina substrate (1.44 cm<sup>2</sup>). Material characterization of the synthesized material was carried out using UV-Visible, SEM and XRD. To get films of higher thickness they were coated from 1 to 4 layers and annealed in the furnace at an optimized temperature of 550°C for ~1 hour. Obtained SnO<sub>2</sub> thin films were tested for change in resistance w.r.t. humidity from 10 to 20% RH at 200°C and 300°C to be used in boilers. Samples have low hysteresis (~12%) with recovery time of about ~10 sec. They have shown good repeatability (5%). The sensitivity of tested films was found to increase with respect to number of SnO<sub>2</sub> layers. Sensitivity of 2 layered film operating at 200°C is 146 Ω/%RH and that of 4 layered film is 314 Ω/%RH, likewise at 300 °C the sensitivity of the films are 165 Ω/%RH and 323 Ω/%RH respectively.\",\"PeriodicalId\":6520,\"journal\":{\"name\":\"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)\",\"volume\":\"35 1\",\"pages\":\"200-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPTS.2015.7220112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2015.7220112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature operable low humidity (10 to 20%RH) sensor using spin coated SnO2 thin films
The paper presents Tin oxide (SnO2) based low cost, high temperature operable resistive type low humidity (10-20%RH) sensor. SnO2 thin films were prepared by spin coating 50 μl of synthesized (SnCl2) solution on alumina substrate (1.44 cm2). Material characterization of the synthesized material was carried out using UV-Visible, SEM and XRD. To get films of higher thickness they were coated from 1 to 4 layers and annealed in the furnace at an optimized temperature of 550°C for ~1 hour. Obtained SnO2 thin films were tested for change in resistance w.r.t. humidity from 10 to 20% RH at 200°C and 300°C to be used in boilers. Samples have low hysteresis (~12%) with recovery time of about ~10 sec. They have shown good repeatability (5%). The sensitivity of tested films was found to increase with respect to number of SnO2 layers. Sensitivity of 2 layered film operating at 200°C is 146 Ω/%RH and that of 4 layered film is 314 Ω/%RH, likewise at 300 °C the sensitivity of the films are 165 Ω/%RH and 323 Ω/%RH respectively.