非线性周期时间分数抛物型问题的单调迭代技术

Abdelilah Lamrani Alaoui, E. Azroul, Abdelouahed Alla Hamou
{"title":"非线性周期时间分数抛物型问题的单调迭代技术","authors":"Abdelilah Lamrani Alaoui, E. Azroul, Abdelouahed Alla Hamou","doi":"10.31197/atnaa.770669","DOIUrl":null,"url":null,"abstract":"In this paper, the existence and uniqueness of the weak solution for a linear parabolic equation with conformable derivative are proved, the existence of weak periodic solutions for conformable fractional parabolic nonlinear differential equation is proved by using a more generalized monotone iterative method combined with the method of upper and lower solutions. We prove the monotone sequence converge to weak periodic minimal and maximal solutions. Moreover, the conformable version of the Lions-Magness and Aubin–Lions lemmas are also proved.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Monotone Iterative Technique for Nonlinear Periodic Time Fractional Parabolic Problems\",\"authors\":\"Abdelilah Lamrani Alaoui, E. Azroul, Abdelouahed Alla Hamou\",\"doi\":\"10.31197/atnaa.770669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the existence and uniqueness of the weak solution for a linear parabolic equation with conformable derivative are proved, the existence of weak periodic solutions for conformable fractional parabolic nonlinear differential equation is proved by using a more generalized monotone iterative method combined with the method of upper and lower solutions. We prove the monotone sequence converge to weak periodic minimal and maximal solutions. Moreover, the conformable version of the Lions-Magness and Aubin–Lions lemmas are also proved.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.770669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.770669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文证明了一类导数可调的线性抛物型非线性微分方程弱解的存在唯一性,利用更广义的单调迭代方法结合上下解方法,证明了可调分数阶抛物型非线性微分方程弱周期解的存在性。证明了单调序列收敛于弱周期极小解和极大解。此外,还证明了Lions-Magness引理和Aubin-Lions引理的合形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotone Iterative Technique for Nonlinear Periodic Time Fractional Parabolic Problems
In this paper, the existence and uniqueness of the weak solution for a linear parabolic equation with conformable derivative are proved, the existence of weak periodic solutions for conformable fractional parabolic nonlinear differential equation is proved by using a more generalized monotone iterative method combined with the method of upper and lower solutions. We prove the monotone sequence converge to weak periodic minimal and maximal solutions. Moreover, the conformable version of the Lions-Magness and Aubin–Lions lemmas are also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信