切比雪夫方法的一种有效改进

IF 0.9 Q3 MATHEMATICS, APPLIED
José Antonio Ezquerro, Miguel Ángel Hernández-Verón, Ángel Alberto Magreñán
{"title":"切比雪夫方法的一种有效改进","authors":"José Antonio Ezquerro,&nbsp;Miguel Ángel Hernández-Verón,&nbsp;Ángel Alberto Magreñán","doi":"10.1002/cmm4.1187","DOIUrl":null,"url":null,"abstract":"<p>An efficient modification of the Chebyshev method is constructed from approximating the second derivative of the operator involved by combinations of the operator in different points and it is used to locate, separate, and approximate the solutions of a Chandrasekhar integral equation from analysing its global convergence.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1187","citationCount":"0","resultStr":"{\"title\":\"On an efficient modification of the Chebyshev method\",\"authors\":\"José Antonio Ezquerro,&nbsp;Miguel Ángel Hernández-Verón,&nbsp;Ángel Alberto Magreñán\",\"doi\":\"10.1002/cmm4.1187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient modification of the Chebyshev method is constructed from approximating the second derivative of the operator involved by combinations of the operator in different points and it is used to locate, separate, and approximate the solutions of a Chandrasekhar integral equation from analysing its global convergence.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过算子在不同点上的组合来逼近算子的二阶导数,构造了Chebyshev方法的一种有效改进,并通过分析Chandrasekhar积分方程的全局收敛性来定位、分离和逼近该方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On an efficient modification of the Chebyshev method

On an efficient modification of the Chebyshev method

An efficient modification of the Chebyshev method is constructed from approximating the second derivative of the operator involved by combinations of the operator in different points and it is used to locate, separate, and approximate the solutions of a Chandrasekhar integral equation from analysing its global convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信