M. Abobo, L. Rodriguez, Sonia D. Salvador, Henry C. Siy, D. Peñaloza
{"title":"有机粘土增强对不饱和聚酯树脂复合材料力学和热性能的影响","authors":"M. Abobo, L. Rodriguez, Sonia D. Salvador, Henry C. Siy, D. Peñaloza","doi":"10.14382/EPITOANYAG-JSBCM.2021.10","DOIUrl":null,"url":null,"abstract":"Unsaturated polyester resin (UPR) is a popular material of choice for composite materials, particular in glass fiber–reinforced plastics (FRP) and casting resins (non-reinforced). Our study presents the preparation of clay-based UPR composite materials employing various loadings of organo-modified montmorillonite clay as a filler to a UPR serving as the matrix material that resulted in enhanced thermal and mechanical properties compared to a bare UPR. Wetting behavior of the resulting composites was much better than UPR only. Such property enhancements were connected to the exfoliated morphology of the composite materials. Tensile measurements through universal testing machine was carried out to measure tensile strength while thermal stability was characterized using thermogravimetric analysis. Wetting behavior of the composite materials was evaluated using contact angle measurements. Evaluation of the structure and morphology of the composite materials as well as clay fillers was determined through scanning electron microscopy (SEM), Fourier transform (FTIR) infrared spectroscopy and x-ray diffraction (XRD) technique.","PeriodicalId":11915,"journal":{"name":"Epitoanyag - Journal of Silicate Based and Composite Materials","volume":"5 1","pages":"63-67"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of organoclay reinforcement on the mechanical and thermal properties of unsaturated polyester resin composites\",\"authors\":\"M. Abobo, L. Rodriguez, Sonia D. Salvador, Henry C. Siy, D. Peñaloza\",\"doi\":\"10.14382/EPITOANYAG-JSBCM.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsaturated polyester resin (UPR) is a popular material of choice for composite materials, particular in glass fiber–reinforced plastics (FRP) and casting resins (non-reinforced). Our study presents the preparation of clay-based UPR composite materials employing various loadings of organo-modified montmorillonite clay as a filler to a UPR serving as the matrix material that resulted in enhanced thermal and mechanical properties compared to a bare UPR. Wetting behavior of the resulting composites was much better than UPR only. Such property enhancements were connected to the exfoliated morphology of the composite materials. Tensile measurements through universal testing machine was carried out to measure tensile strength while thermal stability was characterized using thermogravimetric analysis. Wetting behavior of the composite materials was evaluated using contact angle measurements. Evaluation of the structure and morphology of the composite materials as well as clay fillers was determined through scanning electron microscopy (SEM), Fourier transform (FTIR) infrared spectroscopy and x-ray diffraction (XRD) technique.\",\"PeriodicalId\":11915,\"journal\":{\"name\":\"Epitoanyag - Journal of Silicate Based and Composite Materials\",\"volume\":\"5 1\",\"pages\":\"63-67\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epitoanyag - Journal of Silicate Based and Composite Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14382/EPITOANYAG-JSBCM.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epitoanyag - Journal of Silicate Based and Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14382/EPITOANYAG-JSBCM.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of organoclay reinforcement on the mechanical and thermal properties of unsaturated polyester resin composites
Unsaturated polyester resin (UPR) is a popular material of choice for composite materials, particular in glass fiber–reinforced plastics (FRP) and casting resins (non-reinforced). Our study presents the preparation of clay-based UPR composite materials employing various loadings of organo-modified montmorillonite clay as a filler to a UPR serving as the matrix material that resulted in enhanced thermal and mechanical properties compared to a bare UPR. Wetting behavior of the resulting composites was much better than UPR only. Such property enhancements were connected to the exfoliated morphology of the composite materials. Tensile measurements through universal testing machine was carried out to measure tensile strength while thermal stability was characterized using thermogravimetric analysis. Wetting behavior of the composite materials was evaluated using contact angle measurements. Evaluation of the structure and morphology of the composite materials as well as clay fillers was determined through scanning electron microscopy (SEM), Fourier transform (FTIR) infrared spectroscopy and x-ray diffraction (XRD) technique.