{"title":"一类极值估计的拟似然比检验的非参数自举的渐近改进","authors":"Lorenzo Camponovo","doi":"10.1111/ectj.12060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12060","citationCount":"1","resultStr":"{\"title\":\"Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators\",\"authors\":\"Lorenzo Camponovo\",\"doi\":\"10.1111/ectj.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2016-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12060\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators
We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.