一类极值估计的拟似然比检验的非参数自举的渐近改进

IF 2.9 4区 经济学 Q1 ECONOMICS
Lorenzo Camponovo
{"title":"一类极值估计的拟似然比检验的非参数自举的渐近改进","authors":"Lorenzo Camponovo","doi":"10.1111/ectj.12060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12060","citationCount":"1","resultStr":"{\"title\":\"Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators\",\"authors\":\"Lorenzo Camponovo\",\"doi\":\"10.1111/ectj.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2016-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12060\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12060","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了非线性约束的拟似然比型检验的非参数自举的渐近改进。自举法适用于极值估计,如拟极大似然估计和广义矩估计等。与现有的准似然比类型检验的参数自举方法不同,这种自举方法不需要对数据分布进行任何特定的参数假设,并且以完全非参数的方式构建自举样本。与基于标准一阶渐近理论的方法相比,我们得到了非参数自举的高阶改进。我们表明,这些改进的幅度与文献中目前提出的参数自举过程相同。蒙特卡罗仿真验证了该方法的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio tests for classes of extremum estimators

We study the asymptotic refinements of nonparametric bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions. The bootstrap method applies to extremum estimators, such as quasi-maximum likelihood and generalized method of moments estimators, among others. Unlike existing parametric bootstrap procedures for quasi-likelihood ratio type tests, this bootstrap approach does not require any specific parametric assumption on the data distribution, and constructs the bootstrap samples in a fully nonparametric way. We derive the higher-order improvements of the nonparametric bootstrap compared to procedures based on standard first-order asymptotic theory. We show that the magnitude of these improvements is the same as those of parametric bootstrap procedures currently proposed in the literature. Monte Carlo simulations confirm the reliability and accuracy of the nonparametric bootstrap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信