M. Kamali
求助PDF
{"title":"Fekete-Szegö与Gegenbauer多项式相关的解析函数子类的不等式","authors":"M. Kamali","doi":"10.15330/cmp.14.2.582-591","DOIUrl":null,"url":null,"abstract":"In this paper, we define a subclass of analytic functions by denote $T_{\\beta}H\\left( z,C_{n}^{\\left( \\lambda \\right) }\\left( t\\right) \\right) $ satisfying the following subordinate condition \\begin{equation*} \\left( 1-\\beta \\right) \\left( \\frac{zf^{^{\\prime }}\\left( z\\right) }{f\\left( z\\right) }\\right) +\\beta \\left( 1+\\frac{zf^{^{\\prime \\prime }}\\left( z\\right) }{f^{^{\\prime }}\\left( z\\right) }\\right) \\prec \\frac{1}{\\left( 1-2tz+z^{2}\\right) ^{\\lambda }}, \\end{equation*} where $\\beta \\geq 0$, $\\lambda \\geq 0$ and $t\\in \\left( \\frac{1}{2},1\\right] $. We give coefficient estimates and Fekete-Szegö inequality for functions belong to this subclass.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fekete-Szegö inequality for a subclass of analytic functions associated with Gegenbauer polynomials\",\"authors\":\"M. Kamali\",\"doi\":\"10.15330/cmp.14.2.582-591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a subclass of analytic functions by denote $T_{\\\\beta}H\\\\left( z,C_{n}^{\\\\left( \\\\lambda \\\\right) }\\\\left( t\\\\right) \\\\right) $ satisfying the following subordinate condition \\\\begin{equation*} \\\\left( 1-\\\\beta \\\\right) \\\\left( \\\\frac{zf^{^{\\\\prime }}\\\\left( z\\\\right) }{f\\\\left( z\\\\right) }\\\\right) +\\\\beta \\\\left( 1+\\\\frac{zf^{^{\\\\prime \\\\prime }}\\\\left( z\\\\right) }{f^{^{\\\\prime }}\\\\left( z\\\\right) }\\\\right) \\\\prec \\\\frac{1}{\\\\left( 1-2tz+z^{2}\\\\right) ^{\\\\lambda }}, \\\\end{equation*} where $\\\\beta \\\\geq 0$, $\\\\lambda \\\\geq 0$ and $t\\\\in \\\\left( \\\\frac{1}{2},1\\\\right] $. We give coefficient estimates and Fekete-Szegö inequality for functions belong to this subclass.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.582-591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.582-591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Fekete-Szegö inequality for a subclass of analytic functions associated with Gegenbauer polynomials
In this paper, we define a subclass of analytic functions by denote $T_{\beta}H\left( z,C_{n}^{\left( \lambda \right) }\left( t\right) \right) $ satisfying the following subordinate condition \begin{equation*} \left( 1-\beta \right) \left( \frac{zf^{^{\prime }}\left( z\right) }{f\left( z\right) }\right) +\beta \left( 1+\frac{zf^{^{\prime \prime }}\left( z\right) }{f^{^{\prime }}\left( z\right) }\right) \prec \frac{1}{\left( 1-2tz+z^{2}\right) ^{\lambda }}, \end{equation*} where $\beta \geq 0$, $\lambda \geq 0$ and $t\in \left( \frac{1}{2},1\right] $. We give coefficient estimates and Fekete-Szegö inequality for functions belong to this subclass.