{"title":"特征纹理法:基于三维模型的外观压缩","authors":"K. Nishino, Yoichi Sato, K. Ikeuchi","doi":"10.1109/CVPR.1999.787003","DOIUrl":null,"url":null,"abstract":"Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Eigen-texture method: Appearance compression based on 3D model\",\"authors\":\"K. Nishino, Yoichi Sato, K. Ikeuchi\",\"doi\":\"10.1109/CVPR.1999.787003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.787003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.787003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eigen-texture method: Appearance compression based on 3D model
Image-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. Extensive research on these two methods has been made in CV and CG communities. However, both methods still have several drawbacks when it comes to applying them to the mixed reality where we integrate such virtual images with real background images. To overcome these difficulties, we propose a new method which we refer to as the Eigen-Texture method. The proposed method samples appearances of a real object under various illumination and viewing conditions, and compresses them in the 2D coordinate system defined on the 3D model surface. The 3D model is generated from a sequence of range images. The Eigen-Texture method is practical because it does not require any detailed reflectance analysis of the object surface, and has great advantages due to the accurate 3D geometric models. This paper describes the method, and reports on its implementation.