{"title":"LSST数据的新时代:估计主序星系的物理性质","authors":"G. Riccio","doi":"10.1017/S1743921322004793","DOIUrl":null,"url":null,"abstract":"Abstract The main goal of the Vera C. Rubin observatory is to perform the 10 year Legacy Survey of Space and Time (LSST). This future state-of-art observatory will open the new window to study billions of galaxies from Local Universe as well as the high redshift objects. In this work we employ simulated LSST observations and uncertainties, based on the 50 385 real galaxies within the redshift range 0 < z < 2.5 from the ELAIS-N1 and COSMOS fields of the Herschel Extragalactic Legacy Project (HELP) survey, to constrain the physical properties of normal star-forming galaxies, such as their star formation rate (SFR), stellar mass (Mstar), and dust luminosity (Ldust). We fit their spectral energy distributions (SEDs) using the Code Investigating GALaxy Emission (CIGALE). The stellar masses estimated based on the LSST measurements agree with the full UV to far-IR SED, while we obtain a clear overestimate of the dust-related properties (SFR, Ldust) estimated with LSST. We investigate the cause of this result and find that it is necessary to employ auxiliary rest-frame mid-IR observations, simulated UV observations, or the far-UV attenuation (AFUV)-Mstar relation to correct for the overestimate.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New era of LSST data: Estimating the physical properties of main-sequence galaxies\",\"authors\":\"G. Riccio\",\"doi\":\"10.1017/S1743921322004793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main goal of the Vera C. Rubin observatory is to perform the 10 year Legacy Survey of Space and Time (LSST). This future state-of-art observatory will open the new window to study billions of galaxies from Local Universe as well as the high redshift objects. In this work we employ simulated LSST observations and uncertainties, based on the 50 385 real galaxies within the redshift range 0 < z < 2.5 from the ELAIS-N1 and COSMOS fields of the Herschel Extragalactic Legacy Project (HELP) survey, to constrain the physical properties of normal star-forming galaxies, such as their star formation rate (SFR), stellar mass (Mstar), and dust luminosity (Ldust). We fit their spectral energy distributions (SEDs) using the Code Investigating GALaxy Emission (CIGALE). The stellar masses estimated based on the LSST measurements agree with the full UV to far-IR SED, while we obtain a clear overestimate of the dust-related properties (SFR, Ldust) estimated with LSST. We investigate the cause of this result and find that it is necessary to employ auxiliary rest-frame mid-IR observations, simulated UV observations, or the far-UV attenuation (AFUV)-Mstar relation to correct for the overestimate.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921322004793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921322004793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Vera C. Rubin天文台的主要目标是执行为期10年的时空遗产调查(LSST)。这个未来最先进的天文台将为研究来自本地宇宙的数十亿星系以及高红移天体打开新的窗口。在这项工作中,我们采用模拟的LSST观测和不确定性,基于赫歇尔河外遗产计划(HELP)调查的elais1 - n1和COSMOS场在红移范围0 < z < 2.5内的50385个真实星系,来约束正常恒星形成星系的物理特性,例如它们的恒星形成速率(SFR),恒星质量(Mstar)和尘埃光度(Ldust)。我们使用Code investigation GALaxy Emission (CIGALE)来拟合它们的光谱能量分布(SEDs)。基于LSST测量估计的恒星质量与完整的紫外到远红外SED一致,而我们对LSST估计的尘埃相关特性(SFR, Ldust)有明显的高估。我们研究了造成这一结果的原因,并发现有必要采用辅助静帧中红外观测、模拟紫外观测或远紫外衰减(AFUV)-Mstar关系来纠正高估。
New era of LSST data: Estimating the physical properties of main-sequence galaxies
Abstract The main goal of the Vera C. Rubin observatory is to perform the 10 year Legacy Survey of Space and Time (LSST). This future state-of-art observatory will open the new window to study billions of galaxies from Local Universe as well as the high redshift objects. In this work we employ simulated LSST observations and uncertainties, based on the 50 385 real galaxies within the redshift range 0 < z < 2.5 from the ELAIS-N1 and COSMOS fields of the Herschel Extragalactic Legacy Project (HELP) survey, to constrain the physical properties of normal star-forming galaxies, such as their star formation rate (SFR), stellar mass (Mstar), and dust luminosity (Ldust). We fit their spectral energy distributions (SEDs) using the Code Investigating GALaxy Emission (CIGALE). The stellar masses estimated based on the LSST measurements agree with the full UV to far-IR SED, while we obtain a clear overestimate of the dust-related properties (SFR, Ldust) estimated with LSST. We investigate the cause of this result and find that it is necessary to employ auxiliary rest-frame mid-IR observations, simulated UV observations, or the far-UV attenuation (AFUV)-Mstar relation to correct for the overestimate.