具有指数分数核的Volterra积分微分方程解的正确可解性和表示

V. V. Vlasov, N. Rautian
{"title":"具有指数分数核的Volterra积分微分方程解的正确可解性和表示","authors":"V. V. Vlasov, N. Rautian","doi":"10.31857/s0869-56524885476-480","DOIUrl":null,"url":null,"abstract":"For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.","PeriodicalId":24047,"journal":{"name":"Доклады Академии наук","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correct solvability and representation of the solutions of Volterra integro-differential equations with exponential-fractional kernels\",\"authors\":\"V. V. Vlasov, N. Rautian\",\"doi\":\"10.31857/s0869-56524885476-480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.\",\"PeriodicalId\":24047,\"journal\":{\"name\":\"Доклады Академии наук\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Доклады Академии наук\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/s0869-56524885476-480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Доклады Академии наук","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0869-56524885476-480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于Hilbert空间中具有无界算子系数的抽象积分微分方程,我们研究了初始问题的适定可解性,并对作为这些方程符号的算子函数进行了谱分析。这允许我们将这些方程的强解表示为与算子函数谱上的点相对应的指数级数。所研究的方程是粘弹性和其他几个重要应用中出现的线性积分-偏微分方程的抽象形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correct solvability and representation of the solutions of Volterra integro-differential equations with exponential-fractional kernels
For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信