Junlin Yang, Ye Chen, Jinbo Yang, Chaoqun Xiang, Liang Li
{"title":"一种基于面内三阶模态振动的环形行波直线超声电机","authors":"Junlin Yang, Ye Chen, Jinbo Yang, Chaoqun Xiang, Liang Li","doi":"10.1080/07315171.2023.2189853","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a new type of circular ring traveling wave linear ultrasonic motor with incomplete teeth. The motor’s movable slider is pressed against the end face of the tooth structure on the outer surface of the circular ring vibrator under a certain pre-pressure, four piezoelectric ceramic plates are evenly distributed at 90° intervals on the inner side of the circular structure, and four sets of driving teeth are arranged at 45° intervals from the position of the piezoelectric ceramic plates.When the motor is in operation, only one driving tooth works, and the life of the ultrasonic motor can be increased by rotating the different working teeth. The motor operates in two in-plane third-order bending modes that are orthogonal to each other at the same frequency. The dynamic design and simulation of the vibrator was carried out using ANSYS finite element software to analyze the effect of the structure on the mode. The principle prototype was fabricated, and the operating mode of the vibrator was measured using a laser Doppler vibrometer (LDV), and the vibration characteristics and output performance of the prototype were tested. Experimental results show that the motor runs smoothly at the excitation voltage of 240 V peak-to-peak, the excitation frequency of 30.459 kHz and the pre-pressure of 0.6 N, with the maximum output force of 90 mN and the motor no-load speed of 102 mm/s.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A ring-type traveling wave linear ultrasonic motor based on in-plane third-order modal vibration\",\"authors\":\"Junlin Yang, Ye Chen, Jinbo Yang, Chaoqun Xiang, Liang Li\",\"doi\":\"10.1080/07315171.2023.2189853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a new type of circular ring traveling wave linear ultrasonic motor with incomplete teeth. The motor’s movable slider is pressed against the end face of the tooth structure on the outer surface of the circular ring vibrator under a certain pre-pressure, four piezoelectric ceramic plates are evenly distributed at 90° intervals on the inner side of the circular structure, and four sets of driving teeth are arranged at 45° intervals from the position of the piezoelectric ceramic plates.When the motor is in operation, only one driving tooth works, and the life of the ultrasonic motor can be increased by rotating the different working teeth. The motor operates in two in-plane third-order bending modes that are orthogonal to each other at the same frequency. The dynamic design and simulation of the vibrator was carried out using ANSYS finite element software to analyze the effect of the structure on the mode. The principle prototype was fabricated, and the operating mode of the vibrator was measured using a laser Doppler vibrometer (LDV), and the vibration characteristics and output performance of the prototype were tested. Experimental results show that the motor runs smoothly at the excitation voltage of 240 V peak-to-peak, the excitation frequency of 30.459 kHz and the pre-pressure of 0.6 N, with the maximum output force of 90 mN and the motor no-load speed of 102 mm/s.\",\"PeriodicalId\":50451,\"journal\":{\"name\":\"Ferroelectrics Letters Section\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferroelectrics Letters Section\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/07315171.2023.2189853\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2023.2189853","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A ring-type traveling wave linear ultrasonic motor based on in-plane third-order modal vibration
Abstract This paper proposes a new type of circular ring traveling wave linear ultrasonic motor with incomplete teeth. The motor’s movable slider is pressed against the end face of the tooth structure on the outer surface of the circular ring vibrator under a certain pre-pressure, four piezoelectric ceramic plates are evenly distributed at 90° intervals on the inner side of the circular structure, and four sets of driving teeth are arranged at 45° intervals from the position of the piezoelectric ceramic plates.When the motor is in operation, only one driving tooth works, and the life of the ultrasonic motor can be increased by rotating the different working teeth. The motor operates in two in-plane third-order bending modes that are orthogonal to each other at the same frequency. The dynamic design and simulation of the vibrator was carried out using ANSYS finite element software to analyze the effect of the structure on the mode. The principle prototype was fabricated, and the operating mode of the vibrator was measured using a laser Doppler vibrometer (LDV), and the vibration characteristics and output performance of the prototype were tested. Experimental results show that the motor runs smoothly at the excitation voltage of 240 V peak-to-peak, the excitation frequency of 30.459 kHz and the pre-pressure of 0.6 N, with the maximum output force of 90 mN and the motor no-load speed of 102 mm/s.
期刊介绍:
Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals.
Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.