具有时无关噪声的随机波动方程的精确渐近性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
R. Balan, Le Chen, Xia Chen
{"title":"具有时无关噪声的随机波动方程的精确渐近性","authors":"R. Balan, Le Chen, Xia Chen","doi":"10.1214/21-aihp1207","DOIUrl":null,"url":null,"abstract":"In this article, we study the stochastic wave equation in all dimensions $d\\leq 3$, driven by a Gaussian noise $\\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exact asymptotics of the stochastic wave equation with time-independent noise\",\"authors\":\"R. Balan, Le Chen, Xia Chen\",\"doi\":\"10.1214/21-aihp1207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the stochastic wave equation in all dimensions $d\\\\leq 3$, driven by a Gaussian noise $\\\\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们研究了随机波动方程在所有维度$d\leq 3$,由高斯噪声$\dot{W}$驱动,它不依赖于时间。我们假设噪声是白色的,或者噪声的协方差函数满足类似Riesz核的缩放性质。这个解是用Malliavin演算在Skorohod意义上解释的。当时间较大或$p$较大时,我们得到了解的$p$ -th矩的确切渐近行为。对于临界情况,即$d=3$和噪声为白色的情况,我们得到第二时刻的确切过渡时间是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact asymptotics of the stochastic wave equation with time-independent noise
In this article, we study the stochastic wave equation in all dimensions $d\leq 3$, driven by a Gaussian noise $\dot{W}$ which does not depend on time. We assume that either the noise is white, or the covariance function of the noise satisfies a scaling property similar to the Riesz kernel. The solution is interpreted in the Skorohod sense using Malliavin calculus. We obtain the exact asymptotic behaviour of the $p$-th moment of the solution either when the time is large or when $p$ is large. For the critical case, that is the case when $d=3$ and the noise is white, we obtain the exact transition time for the second moment to be finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信