达西定律作为可压缩流体在穿孔区域的低马赫数和均匀化极限

Karina Kowalczyk, Richard Hofer, S. Schwarzacher
{"title":"达西定律作为可压缩流体在穿孔区域的低马赫数和均匀化极限","authors":"Karina Kowalczyk, Richard Hofer, S. Schwarzacher","doi":"10.1142/s0218202521500391","DOIUrl":null,"url":null,"abstract":"We consider the homogenization limit of the compressible barotropic Navier-Stokes equations in a three-dimensional domain perforated by periodically distributed identical particles. We study the regime of particle sizes and distances such that the volume fraction of particles tends to zero but their resistance density tends to infinity. Assuming that the Mach number is increasing with a certain rate, the rescaled velocity and pressure of the microscopic system converges to the solution of an effective equation which is given by Darcy's law. The range of sizes of particles we consider are exactly the same which lead to Darcy's law in the homogenization limit of incompressible fluids. Unlike previous results for the Darcy regime we estimate the deficit related to the pressure approximation via the Bogovski\\u{i} operator This allows for more flexible estimates of the pressure in Lebesgue and Sobolev spaces and allows to proof convergence results for all barotropic exponents $\\gamma> \\frac32$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Darcy’s law as low Mach and homogenization limit of a compressible fluid in perforated domains\",\"authors\":\"Karina Kowalczyk, Richard Hofer, S. Schwarzacher\",\"doi\":\"10.1142/s0218202521500391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the homogenization limit of the compressible barotropic Navier-Stokes equations in a three-dimensional domain perforated by periodically distributed identical particles. We study the regime of particle sizes and distances such that the volume fraction of particles tends to zero but their resistance density tends to infinity. Assuming that the Mach number is increasing with a certain rate, the rescaled velocity and pressure of the microscopic system converges to the solution of an effective equation which is given by Darcy's law. The range of sizes of particles we consider are exactly the same which lead to Darcy's law in the homogenization limit of incompressible fluids. Unlike previous results for the Darcy regime we estimate the deficit related to the pressure approximation via the Bogovski\\\\u{i} operator This allows for more flexible estimates of the pressure in Lebesgue and Sobolev spaces and allows to proof convergence results for all barotropic exponents $\\\\gamma> \\\\frac32$.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202521500391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202521500391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了由周期分布的相同粒子穿孔的三维区域中可压缩正压Navier-Stokes方程的均匀化极限。我们研究了粒子大小和距离的变化规律,使得粒子的体积分数趋于零,而它们的阻力密度趋于无穷大。假设马赫数以一定的速率增加,微观系统的速度和压力的重新标度收敛于一个有效方程的解,该方程由达西定律给出。我们考虑的颗粒大小范围完全相同,这导致了不可压缩流体均质极限中的达西定律。与Darcy状态的先前结果不同,我们通过Bogovski \u{i}算子估计与压力近似相关的亏值,这允许更灵活地估计Lebesgue和Sobolev空间中的压力,并允许证明所有正压指数的收敛结果$\gamma> \frac32$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Darcy’s law as low Mach and homogenization limit of a compressible fluid in perforated domains
We consider the homogenization limit of the compressible barotropic Navier-Stokes equations in a three-dimensional domain perforated by periodically distributed identical particles. We study the regime of particle sizes and distances such that the volume fraction of particles tends to zero but their resistance density tends to infinity. Assuming that the Mach number is increasing with a certain rate, the rescaled velocity and pressure of the microscopic system converges to the solution of an effective equation which is given by Darcy's law. The range of sizes of particles we consider are exactly the same which lead to Darcy's law in the homogenization limit of incompressible fluids. Unlike previous results for the Darcy regime we estimate the deficit related to the pressure approximation via the Bogovski\u{i} operator This allows for more flexible estimates of the pressure in Lebesgue and Sobolev spaces and allows to proof convergence results for all barotropic exponents $\gamma> \frac32$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信