基数函数、谱和强惠特尼收敛

Pub Date : 2022-02-04 DOI:10.36045/j.bbms.220204
T. Chauhan, V. Jindal
{"title":"基数函数、谱和强惠特尼收敛","authors":"T. Chauhan, V. Jindal","doi":"10.36045/j.bbms.220204","DOIUrl":null,"url":null,"abstract":"Let $C(X)$ be the set of all real valued continuous functions on a metric space $(X,d)$. Caserta introduced the topology of strong Whitney convergence on bornology for $C(X)$ in [A. Caserta, Strong Whitney convergence, Filomat, 2012], which is a generalization of the topology of strong uniform convergence on bornology introduced by Beer-Levi in [Beer-Levi, Strong uniform continuity, J. Math. Anal. Appl., 2009]. The purpose of this paper is to study various cardinal invariants of the function space $C(X)$ endowed with the topologies of strong Whitney and Whitney convergence on bornology. In the process, we present simpler proofs of a number of results from the literature. In the end, relationships between cardinal invariants of strong Whitney convergence and strong uniform convergence on $C(X)$ have also been studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cardinal Functions, Bornologies and Strong Whitney convergence\",\"authors\":\"T. Chauhan, V. Jindal\",\"doi\":\"10.36045/j.bbms.220204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $C(X)$ be the set of all real valued continuous functions on a metric space $(X,d)$. Caserta introduced the topology of strong Whitney convergence on bornology for $C(X)$ in [A. Caserta, Strong Whitney convergence, Filomat, 2012], which is a generalization of the topology of strong uniform convergence on bornology introduced by Beer-Levi in [Beer-Levi, Strong uniform continuity, J. Math. Anal. Appl., 2009]. The purpose of this paper is to study various cardinal invariants of the function space $C(X)$ endowed with the topologies of strong Whitney and Whitney convergence on bornology. In the process, we present simpler proofs of a number of results from the literature. In the end, relationships between cardinal invariants of strong Whitney convergence and strong uniform convergence on $C(X)$ have also been studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.220204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.220204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设C(X)$是度量空间$(X,d)$上所有实值连续函数的集合。Caserta在[A]中引入了$C(X)$的本体上的强Whitney收敛拓扑。Caserta, Strong Whitney convergence, Filomat, 2012],这是对Beer-Levi在[Beer-Levi, Strong uniform continuity, J. Math]中引入的bornology上的强一致收敛拓扑的推广。分析的达成。, 2009]。本文的目的是研究具有强惠特尼和惠特尼收敛拓扑的函数空间$C(X)$的各种基数不变量。在此过程中,我们对文献中的一些结果提出了更简单的证明。最后,研究了C(X)$上的强惠特尼收敛与强一致收敛的基数不变量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cardinal Functions, Bornologies and Strong Whitney convergence
Let $C(X)$ be the set of all real valued continuous functions on a metric space $(X,d)$. Caserta introduced the topology of strong Whitney convergence on bornology for $C(X)$ in [A. Caserta, Strong Whitney convergence, Filomat, 2012], which is a generalization of the topology of strong uniform convergence on bornology introduced by Beer-Levi in [Beer-Levi, Strong uniform continuity, J. Math. Anal. Appl., 2009]. The purpose of this paper is to study various cardinal invariants of the function space $C(X)$ endowed with the topologies of strong Whitney and Whitney convergence on bornology. In the process, we present simpler proofs of a number of results from the literature. In the end, relationships between cardinal invariants of strong Whitney convergence and strong uniform convergence on $C(X)$ have also been studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信