多物理场问题的有理逼近预条件

IF 1.9 4区 数学 Q1 MATHEMATICS
Ana Budiša, Xiaozhe Hu, M. Kuchta, Kent-A Mardal, L. Zikatanov
{"title":"多物理场问题的有理逼近预条件","authors":"Ana Budiša, Xiaozhe Hu, M. Kuchta, Kent-A Mardal, L. Zikatanov","doi":"10.48550/arXiv.2209.11659","DOIUrl":null,"url":null,"abstract":"We consider a class of mathematical models describing multiphysics phenomena interacting through interfaces. On such interfaces, the traces of the fields lie (approximately) in the range of a weighted sum of two fractional differential operators. We use a rational function approximation to precondition such operators. We first demonstrate the robustness of the approximation for ordinary functions given by weighted sums of fractional exponents. Additionally, we present more realistic examples utilizing the proposed preconditioning techniques in interface coupling between Darcy and Stokes equations.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"16 1","pages":"100-113"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rational approximation preconditioners for multiphysics problems\",\"authors\":\"Ana Budiša, Xiaozhe Hu, M. Kuchta, Kent-A Mardal, L. Zikatanov\",\"doi\":\"10.48550/arXiv.2209.11659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of mathematical models describing multiphysics phenomena interacting through interfaces. On such interfaces, the traces of the fields lie (approximately) in the range of a weighted sum of two fractional differential operators. We use a rational function approximation to precondition such operators. We first demonstrate the robustness of the approximation for ordinary functions given by weighted sums of fractional exponents. Additionally, we present more realistic examples utilizing the proposed preconditioning techniques in interface coupling between Darcy and Stokes equations.\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":\"16 1\",\"pages\":\"100-113\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.11659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.11659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑了一类描述通过接口相互作用的多物理场现象的数学模型。在这样的接口上,域的迹线(近似地)位于两个分数阶微分算子的加权和的范围内。我们使用一个有理函数近似来为这些运算符设定前提条件。我们首先证明了由分数指数加权和给出的普通函数近似的鲁棒性。此外,我们提出了更现实的例子,利用所提出的预处理技术在达西和斯托克斯方程之间的界面耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational approximation preconditioners for multiphysics problems
We consider a class of mathematical models describing multiphysics phenomena interacting through interfaces. On such interfaces, the traces of the fields lie (approximately) in the range of a weighted sum of two fractional differential operators. We use a rational function approximation to precondition such operators. We first demonstrate the robustness of the approximation for ordinary functions given by weighted sums of fractional exponents. Additionally, we present more realistic examples utilizing the proposed preconditioning techniques in interface coupling between Darcy and Stokes equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信