Banach空间中非膨胀半群的广义黏性隐式规则

C. Jaiboon, S. Plubtieng, Phayap Katchang
{"title":"Banach空间中非膨胀半群的广义黏性隐式规则","authors":"C. Jaiboon, S. Plubtieng, Phayap Katchang","doi":"10.22436/JNSA.011.06.02","DOIUrl":null,"url":null,"abstract":"In this research, we focus on a common fixed point problem of a nonexpansive semigroup with the generalized viscosity methods for implicit iterative algorithms. Our main objective is to construct the new strong convergence theorems under certain appropriate conditions in uniformly convex and uniformly smooth Banach spaces. Specifically, the main results make a contribution to the implicit midpoint theorems. The findings for theorems in Hilbert spaces and the other forms of a nonexpansive semigroup can be used in several practical purposes. Finally, a numerical example in 3 dimensions is provided to support our main results.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"17 1","pages":"746-761"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generalized viscosity implicit rule of nonexpansive semigroup in Banach spaces\",\"authors\":\"C. Jaiboon, S. Plubtieng, Phayap Katchang\",\"doi\":\"10.22436/JNSA.011.06.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we focus on a common fixed point problem of a nonexpansive semigroup with the generalized viscosity methods for implicit iterative algorithms. Our main objective is to construct the new strong convergence theorems under certain appropriate conditions in uniformly convex and uniformly smooth Banach spaces. Specifically, the main results make a contribution to the implicit midpoint theorems. The findings for theorems in Hilbert spaces and the other forms of a nonexpansive semigroup can be used in several practical purposes. Finally, a numerical example in 3 dimensions is provided to support our main results.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"17 1\",\"pages\":\"746-761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.011.06.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.06.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用隐式迭代算法的广义粘性方法,研究了一类非扩张半群的公共不动点问题。我们的主要目的是在一致凸和一致光滑的Banach空间中构造在一定条件下的新的强收敛定理。具体地说,主要结果对隐式中点定理作出了贡献。在Hilbert空间和其他形式的非扩张半群中的定理的发现可以用于一些实际用途。最后,给出了一个三维的数值例子来支持我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The generalized viscosity implicit rule of nonexpansive semigroup in Banach spaces
In this research, we focus on a common fixed point problem of a nonexpansive semigroup with the generalized viscosity methods for implicit iterative algorithms. Our main objective is to construct the new strong convergence theorems under certain appropriate conditions in uniformly convex and uniformly smooth Banach spaces. Specifically, the main results make a contribution to the implicit midpoint theorems. The findings for theorems in Hilbert spaces and the other forms of a nonexpansive semigroup can be used in several practical purposes. Finally, a numerical example in 3 dimensions is provided to support our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信