形状的动态方法

Q3 Mathematics
M. Shoptrajanov
{"title":"形状的动态方法","authors":"M. Shoptrajanov","doi":"10.15673/tmgc.v15i1.1860","DOIUrl":null,"url":null,"abstract":"\nIn this paper we will discuss a dynamical approach to an open problem from shape theory. \nWe will address the problem in compact metric spaces using the notion of Lebesgue number for a covering and the intrinsic approach to strong shape. \n","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical approach to shape\",\"authors\":\"M. Shoptrajanov\",\"doi\":\"10.15673/tmgc.v15i1.1860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIn this paper we will discuss a dynamical approach to an open problem from shape theory. \\nWe will address the problem in compact metric spaces using the notion of Lebesgue number for a covering and the intrinsic approach to strong shape. \\n\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v15i1.1860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v15i1.1860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文将讨论从形状理论出发求解开放问题的一种动力学方法。我们将使用勒贝格数的概念和强形状的内在方法来解决紧度量空间中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamical approach to shape
In this paper we will discuss a dynamical approach to an open problem from shape theory. We will address the problem in compact metric spaces using the notion of Lebesgue number for a covering and the intrinsic approach to strong shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信