{"title":"VO2中金属-绝缘子过渡的非易失性控制及其应用","authors":"Hyeongyu Gim, Kootak Hong","doi":"10.31613/ceramist.2023.26.1.01","DOIUrl":null,"url":null,"abstract":"With the advent of the 4th industrial revolution era, there has been a high demand for high-performance electronic devices capable of collecting, storing, and calculating vast amounts of data. Vanadium dioxide (VO2) is considered an attractive candidate for next-generation electronic devices as a prototypical strongly correlated material exhibiting a metal-insulator transition (MIT) accompanied by huge electrical resistivity changes in a few nanoseconds. The nonvolatile control of the MIT in VO2 has recently been the subject of intensive research. In this report, we review recent advancements in the field of nonvolatile control of MIT in VO2, using electrochemical redox reactions, inverse piezoelectric effect, and ferroelectric polarization, and their potential to develop high-performance next-generation electronic devices.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonvolatile Control of Metal-Insulator Transition in VO2 and Its Applications\",\"authors\":\"Hyeongyu Gim, Kootak Hong\",\"doi\":\"10.31613/ceramist.2023.26.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the 4th industrial revolution era, there has been a high demand for high-performance electronic devices capable of collecting, storing, and calculating vast amounts of data. Vanadium dioxide (VO2) is considered an attractive candidate for next-generation electronic devices as a prototypical strongly correlated material exhibiting a metal-insulator transition (MIT) accompanied by huge electrical resistivity changes in a few nanoseconds. The nonvolatile control of the MIT in VO2 has recently been the subject of intensive research. In this report, we review recent advancements in the field of nonvolatile control of MIT in VO2, using electrochemical redox reactions, inverse piezoelectric effect, and ferroelectric polarization, and their potential to develop high-performance next-generation electronic devices.\",\"PeriodicalId\":9738,\"journal\":{\"name\":\"Ceramist\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31613/ceramist.2023.26.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonvolatile Control of Metal-Insulator Transition in VO2 and Its Applications
With the advent of the 4th industrial revolution era, there has been a high demand for high-performance electronic devices capable of collecting, storing, and calculating vast amounts of data. Vanadium dioxide (VO2) is considered an attractive candidate for next-generation electronic devices as a prototypical strongly correlated material exhibiting a metal-insulator transition (MIT) accompanied by huge electrical resistivity changes in a few nanoseconds. The nonvolatile control of the MIT in VO2 has recently been the subject of intensive research. In this report, we review recent advancements in the field of nonvolatile control of MIT in VO2, using electrochemical redox reactions, inverse piezoelectric effect, and ferroelectric polarization, and their potential to develop high-performance next-generation electronic devices.