Mohamed Toub, M. Shahbakhti, R. Robinett, G. Aniba
{"title":"负荷跟随需求响应方案中微型csp集成到建筑HVAC系统的模型预测控制","authors":"Mohamed Toub, M. Shahbakhti, R. Robinett, G. Aniba","doi":"10.1115/dscc2019-9106","DOIUrl":null,"url":null,"abstract":"\n Building heat, ventilation and air conditioning (HVAC) systems are good candidates for demand response (DR) programs as they can flexibly alter their consumption to provide ancillary services to the grid and contribute to frequency and voltage regulation. One of the major ancillary services is the load following demand response (DR) program where the demand side tries to track a DR load profile required by the grid. This paper presents a real-time Model Predictive Control (MPC) framework for optimal operations of a micro-scale concentrated solar power (MicroCSP) system integrated into an office building HVAC system providing ancillary services to the grid. To decrease the energy cost of the building, the designed MPC exploits, along with the flexibility of the building’s HVAC system, the dispatching capabilities of the MicroCSP with thermal energy storage (TES) in order to control the power flow in the building and respond to the DR incentives sent by the grid. The results show the effect of incentives in the building participation to the load following DR program in the presence of a MicroCSP system and to what extent this participation is affected by seasonal weather variations and dynamic pricing.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model Predictive Control of Micro-CSP Integrated Into a Building HVAC System for Load Following Demand Response Programs\",\"authors\":\"Mohamed Toub, M. Shahbakhti, R. Robinett, G. Aniba\",\"doi\":\"10.1115/dscc2019-9106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Building heat, ventilation and air conditioning (HVAC) systems are good candidates for demand response (DR) programs as they can flexibly alter their consumption to provide ancillary services to the grid and contribute to frequency and voltage regulation. One of the major ancillary services is the load following demand response (DR) program where the demand side tries to track a DR load profile required by the grid. This paper presents a real-time Model Predictive Control (MPC) framework for optimal operations of a micro-scale concentrated solar power (MicroCSP) system integrated into an office building HVAC system providing ancillary services to the grid. To decrease the energy cost of the building, the designed MPC exploits, along with the flexibility of the building’s HVAC system, the dispatching capabilities of the MicroCSP with thermal energy storage (TES) in order to control the power flow in the building and respond to the DR incentives sent by the grid. The results show the effect of incentives in the building participation to the load following DR program in the presence of a MicroCSP system and to what extent this participation is affected by seasonal weather variations and dynamic pricing.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Model Predictive Control of Micro-CSP Integrated Into a Building HVAC System for Load Following Demand Response Programs
Building heat, ventilation and air conditioning (HVAC) systems are good candidates for demand response (DR) programs as they can flexibly alter their consumption to provide ancillary services to the grid and contribute to frequency and voltage regulation. One of the major ancillary services is the load following demand response (DR) program where the demand side tries to track a DR load profile required by the grid. This paper presents a real-time Model Predictive Control (MPC) framework for optimal operations of a micro-scale concentrated solar power (MicroCSP) system integrated into an office building HVAC system providing ancillary services to the grid. To decrease the energy cost of the building, the designed MPC exploits, along with the flexibility of the building’s HVAC system, the dispatching capabilities of the MicroCSP with thermal energy storage (TES) in order to control the power flow in the building and respond to the DR incentives sent by the grid. The results show the effect of incentives in the building participation to the load following DR program in the presence of a MicroCSP system and to what extent this participation is affected by seasonal weather variations and dynamic pricing.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.