PCT:社会网络的部分协同

Jiawei Zhang, Philip S. Yu
{"title":"PCT:社会网络的部分协同","authors":"Jiawei Zhang, Philip S. Yu","doi":"10.1145/2872427.2883038","DOIUrl":null,"url":null,"abstract":"People nowadays usually participate in multiple online social networks simultaneously to enjoy more social network services. Besides the common users, social networks providing similar services can also share many other kinds of information entities, e.g., locations, videos and products. However, these shared information entities in different networks are mostly isolated without any known corresponding connections. In this paper, we aim at inferring such potential corresponding connections linking multiple kinds of shared entities across networks simultaneously. Formally, the problem is referred to as the network \"Partial Co-alignmenT\" (PCT) problem. PCT is an important problem and can be the prerequisite for many concrete cross-network applications, like social network fusion, mutual information exchange and transfer. Meanwhile, the PCT problem is also very challenging to address due to various reasons, like (1) the heterogeneity of social networks, (2) lack of training instances to build models, and (3) one-to-one constraint on the correspondence connections. To resolve these challenges, a novel unsupervised network alignment framework, UNICOAT (UNsupervIsed COncurrent AlignmenT)), is introduced in this paper. Based on the heterogeneous information, UNICOAT transforms the PCT problem into a joint optimization problem. To solve the objective function, the one-to-one constraint on the corresponding relationships is relaxed, and the redundant non-existing corresponding connections introduced by such a relaxation will be pruned with a novel network co-matching algorithm proposed in this paper. Extensive experiments conducted on real-world co-aligned social network datasets demonstrate the effectiveness of UNICOAT in addressing the PCT problem.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"PCT: Partial Co-Alignment of Social Networks\",\"authors\":\"Jiawei Zhang, Philip S. Yu\",\"doi\":\"10.1145/2872427.2883038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People nowadays usually participate in multiple online social networks simultaneously to enjoy more social network services. Besides the common users, social networks providing similar services can also share many other kinds of information entities, e.g., locations, videos and products. However, these shared information entities in different networks are mostly isolated without any known corresponding connections. In this paper, we aim at inferring such potential corresponding connections linking multiple kinds of shared entities across networks simultaneously. Formally, the problem is referred to as the network \\\"Partial Co-alignmenT\\\" (PCT) problem. PCT is an important problem and can be the prerequisite for many concrete cross-network applications, like social network fusion, mutual information exchange and transfer. Meanwhile, the PCT problem is also very challenging to address due to various reasons, like (1) the heterogeneity of social networks, (2) lack of training instances to build models, and (3) one-to-one constraint on the correspondence connections. To resolve these challenges, a novel unsupervised network alignment framework, UNICOAT (UNsupervIsed COncurrent AlignmenT)), is introduced in this paper. Based on the heterogeneous information, UNICOAT transforms the PCT problem into a joint optimization problem. To solve the objective function, the one-to-one constraint on the corresponding relationships is relaxed, and the redundant non-existing corresponding connections introduced by such a relaxation will be pruned with a novel network co-matching algorithm proposed in this paper. Extensive experiments conducted on real-world co-aligned social network datasets demonstrate the effectiveness of UNICOAT in addressing the PCT problem.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

现在的人们通常同时参与多个在线社交网络,以享受更多的社交网络服务。除了共同用户之外,提供类似服务的社交网络还可以共享许多其他类型的信息实体,如地点、视频、产品等。然而,这些共享的信息实体在不同的网络中大多是孤立的,没有任何已知的对应连接。在本文中,我们的目的是推断出这种潜在的对应连接,将网络上的多种共享实体同时连接起来。正式地,这个问题被称为网络“部分共对准”(PCT)问题。PCT是一个重要的问题,它可以成为许多具体的跨网络应用的前提,如社交网络融合、相互信息交换和传递。同时,由于各种原因,PCT问题的解决也非常具有挑战性,如:(1)社会网络的异质性;(2)缺乏用于构建模型的训练实例;(3)对应连接的一对一约束。为了解决这些问题,本文提出了一种新的无监督网络对齐框架UNICOAT (unsupervised COncurrent alignment)。基于异构信息,UNICOAT将PCT问题转化为联合优化问题。为了求解目标函数,将对应关系上的一对一约束放宽,并利用本文提出的一种新颖的网络协同匹配算法对这种松弛所引入的冗余不存在的对应连接进行剪枝。在现实世界的共对齐社会网络数据集上进行的大量实验证明了UNICOAT在解决PCT问题方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCT: Partial Co-Alignment of Social Networks
People nowadays usually participate in multiple online social networks simultaneously to enjoy more social network services. Besides the common users, social networks providing similar services can also share many other kinds of information entities, e.g., locations, videos and products. However, these shared information entities in different networks are mostly isolated without any known corresponding connections. In this paper, we aim at inferring such potential corresponding connections linking multiple kinds of shared entities across networks simultaneously. Formally, the problem is referred to as the network "Partial Co-alignmenT" (PCT) problem. PCT is an important problem and can be the prerequisite for many concrete cross-network applications, like social network fusion, mutual information exchange and transfer. Meanwhile, the PCT problem is also very challenging to address due to various reasons, like (1) the heterogeneity of social networks, (2) lack of training instances to build models, and (3) one-to-one constraint on the correspondence connections. To resolve these challenges, a novel unsupervised network alignment framework, UNICOAT (UNsupervIsed COncurrent AlignmenT)), is introduced in this paper. Based on the heterogeneous information, UNICOAT transforms the PCT problem into a joint optimization problem. To solve the objective function, the one-to-one constraint on the corresponding relationships is relaxed, and the redundant non-existing corresponding connections introduced by such a relaxation will be pruned with a novel network co-matching algorithm proposed in this paper. Extensive experiments conducted on real-world co-aligned social network datasets demonstrate the effectiveness of UNICOAT in addressing the PCT problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信