{"title":"一维维拉普拉斯的复兴分析","authors":"A. Getmanenko","doi":"10.1619/FESI.54.383","DOIUrl":null,"url":null,"abstract":"The Witten Laplacian corresponding to a Morse function on the circle is studied using methods of complex WKB and resurgent analysis. It is shown that under certain assumptions the low-lying eigenvalues of the Witten Laplacian are resurgent.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Resurgent Analysis of the Witten Laplacian in One Dimension\",\"authors\":\"A. Getmanenko\",\"doi\":\"10.1619/FESI.54.383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Witten Laplacian corresponding to a Morse function on the circle is studied using methods of complex WKB and resurgent analysis. It is shown that under certain assumptions the low-lying eigenvalues of the Witten Laplacian are resurgent.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/FESI.54.383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.54.383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resurgent Analysis of the Witten Laplacian in One Dimension
The Witten Laplacian corresponding to a Morse function on the circle is studied using methods of complex WKB and resurgent analysis. It is shown that under certain assumptions the low-lying eigenvalues of the Witten Laplacian are resurgent.