{"title":"基于深度学习方法的x射线图像中COVID-19和病毒性肺炎的自动检测","authors":"S. Tripathi, Neeraj Sharma","doi":"10.4015/s1016237223500011","DOIUrl":null,"url":null,"abstract":"The early detection and treatment of COVID-19 infection are necessary to save human life. The study aims to propose a time-efficient and accurate method to classify lung infected images by COVID-19 and viral pneumonia using chest X-ray. The proposed classifier applies end-to-end training approach to classify the images of the set of normal, viral pneumonia and COVID-19-infected images. The features of the two infected classes were precisely captured by the extractor path and transferred to the constructor path for precise classification. The classifier accurately reconstructed the classes using the indices and the feature maps. For firm confirmation of the classification results, we used the Matthews correlation coefficient (MCC) along with accuracy and F1 scores (1 and 0.5). The classification accuracy of the COVID-19 class achieved was about ([Formula: see text])% with MCC score ([Formula: see text]). The classifier is distinguished with great precision between the two nearly correlated infectious classes (COVID-19 and viral pneumonia). The statistical test suggests that the obtained results are statistically significant as [Formula: see text]. The proposed method can save time in the diagnosis of lung infections and can help in reducing the burden on the medical system in the time of the pandemic.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AUTOMATIC DETECTION OF COVID-19 AND VIRAL PNEUMONIA IN X-RAY IMAGES USING DEEP LEARNING APPROACH\",\"authors\":\"S. Tripathi, Neeraj Sharma\",\"doi\":\"10.4015/s1016237223500011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early detection and treatment of COVID-19 infection are necessary to save human life. The study aims to propose a time-efficient and accurate method to classify lung infected images by COVID-19 and viral pneumonia using chest X-ray. The proposed classifier applies end-to-end training approach to classify the images of the set of normal, viral pneumonia and COVID-19-infected images. The features of the two infected classes were precisely captured by the extractor path and transferred to the constructor path for precise classification. The classifier accurately reconstructed the classes using the indices and the feature maps. For firm confirmation of the classification results, we used the Matthews correlation coefficient (MCC) along with accuracy and F1 scores (1 and 0.5). The classification accuracy of the COVID-19 class achieved was about ([Formula: see text])% with MCC score ([Formula: see text]). The classifier is distinguished with great precision between the two nearly correlated infectious classes (COVID-19 and viral pneumonia). The statistical test suggests that the obtained results are statistically significant as [Formula: see text]. The proposed method can save time in the diagnosis of lung infections and can help in reducing the burden on the medical system in the time of the pandemic.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
AUTOMATIC DETECTION OF COVID-19 AND VIRAL PNEUMONIA IN X-RAY IMAGES USING DEEP LEARNING APPROACH
The early detection and treatment of COVID-19 infection are necessary to save human life. The study aims to propose a time-efficient and accurate method to classify lung infected images by COVID-19 and viral pneumonia using chest X-ray. The proposed classifier applies end-to-end training approach to classify the images of the set of normal, viral pneumonia and COVID-19-infected images. The features of the two infected classes were precisely captured by the extractor path and transferred to the constructor path for precise classification. The classifier accurately reconstructed the classes using the indices and the feature maps. For firm confirmation of the classification results, we used the Matthews correlation coefficient (MCC) along with accuracy and F1 scores (1 and 0.5). The classification accuracy of the COVID-19 class achieved was about ([Formula: see text])% with MCC score ([Formula: see text]). The classifier is distinguished with great precision between the two nearly correlated infectious classes (COVID-19 and viral pneumonia). The statistical test suggests that the obtained results are statistically significant as [Formula: see text]. The proposed method can save time in the diagnosis of lung infections and can help in reducing the burden on the medical system in the time of the pandemic.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.