{"title":"模糊数归一化模糊权值的模糊加权平均的性质","authors":"O. Pavlacka, M. Pavlačková","doi":"10.22111/IJFS.2021.6173","DOIUrl":null,"url":null,"abstract":"Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights\",\"authors\":\"O. Pavlacka, M. Pavlačková\",\"doi\":\"10.22111/IJFS.2021.6173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6173\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights
Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.