{"title":"模糊数归一化模糊权值的模糊加权平均的性质","authors":"O. Pavlacka, M. Pavlačková","doi":"10.22111/IJFS.2021.6173","DOIUrl":null,"url":null,"abstract":"Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":"21 1","pages":"1-17"},"PeriodicalIF":1.9000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights\",\"authors\":\"O. Pavlacka, M. Pavlačková\",\"doi\":\"10.22111/IJFS.2021.6173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":\"21 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6173\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6173","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights
Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators -- identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.
期刊介绍:
The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling.
Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.