{"title":"用计算力学研究有丝分裂纺锤体的稳定性","authors":"A. Iakovliev, S. Dasmahapatra, A. Bhaskar","doi":"10.1145/3314367.3314373","DOIUrl":null,"url":null,"abstract":"Fidelity of cell division depends on the ability of an internal cell structure called the mitotic spindle, to maintain the structural integrity of the cellular architecture despite being subject to high compressive loading. We propose a generic software tool called Spindle FEA that employs continuum mechanics and finite elements analysis (FEA) code Abaqus CAE to study the stability of mitotic spindles in various phases of mitosis. The proposed application has a modular structure which allows easy modification of any part of the analysis which is of particular importance considering that new knowledge of spindles is constantly emerging. Thanks to the highly optimised finite element solver used in Abaqus CAE, Spindle FEA is highly suitable for large multi-parametric studies which in turn may significantly benefit the planning of new experiments or identifying new key properties of the spindle. We also discuss the main physiological properties of spindles and show how they are modelled with the proposed technique as well as discuss all the essential analysis steps. We use Spindle FEA to study the buckling of a mitotic spindle in anaphase B to show how the additional stiffness of the lateral support of the spindle affects the left-right symmetry of cell division as well as to demonstrate the capacities of the proposed technique.","PeriodicalId":20485,"journal":{"name":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability of Mitotic Spindle Using Computational Mechanics\",\"authors\":\"A. Iakovliev, S. Dasmahapatra, A. Bhaskar\",\"doi\":\"10.1145/3314367.3314373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fidelity of cell division depends on the ability of an internal cell structure called the mitotic spindle, to maintain the structural integrity of the cellular architecture despite being subject to high compressive loading. We propose a generic software tool called Spindle FEA that employs continuum mechanics and finite elements analysis (FEA) code Abaqus CAE to study the stability of mitotic spindles in various phases of mitosis. The proposed application has a modular structure which allows easy modification of any part of the analysis which is of particular importance considering that new knowledge of spindles is constantly emerging. Thanks to the highly optimised finite element solver used in Abaqus CAE, Spindle FEA is highly suitable for large multi-parametric studies which in turn may significantly benefit the planning of new experiments or identifying new key properties of the spindle. We also discuss the main physiological properties of spindles and show how they are modelled with the proposed technique as well as discuss all the essential analysis steps. We use Spindle FEA to study the buckling of a mitotic spindle in anaphase B to show how the additional stiffness of the lateral support of the spindle affects the left-right symmetry of cell division as well as to demonstrate the capacities of the proposed technique.\",\"PeriodicalId\":20485,\"journal\":{\"name\":\"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314367.3314373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics - ICBBB '19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314367.3314373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of Mitotic Spindle Using Computational Mechanics
Fidelity of cell division depends on the ability of an internal cell structure called the mitotic spindle, to maintain the structural integrity of the cellular architecture despite being subject to high compressive loading. We propose a generic software tool called Spindle FEA that employs continuum mechanics and finite elements analysis (FEA) code Abaqus CAE to study the stability of mitotic spindles in various phases of mitosis. The proposed application has a modular structure which allows easy modification of any part of the analysis which is of particular importance considering that new knowledge of spindles is constantly emerging. Thanks to the highly optimised finite element solver used in Abaqus CAE, Spindle FEA is highly suitable for large multi-parametric studies which in turn may significantly benefit the planning of new experiments or identifying new key properties of the spindle. We also discuss the main physiological properties of spindles and show how they are modelled with the proposed technique as well as discuss all the essential analysis steps. We use Spindle FEA to study the buckling of a mitotic spindle in anaphase B to show how the additional stiffness of the lateral support of the spindle affects the left-right symmetry of cell division as well as to demonstrate the capacities of the proposed technique.