洁净室环境中细菌孢子与颗粒关联的定量测定

Ying Lin
{"title":"洁净室环境中细菌孢子与颗粒关联的定量测定","authors":"Ying Lin","doi":"10.1109/AERO.2012.6187054","DOIUrl":null,"url":null,"abstract":"In order to establish a creditable biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to determine the quantity and size distribution of bacterial spore containing particles on the surface of spacecraft in cleanroom. We conducted an extensive set of air and surface sampling in indoor, outdoor, and cleanroom environments and determined the ratios of the number of spore forming bacteria to that of their dust particle carriers of various sizes. We found that the average number of cultivable spore forming bacteria on particles of >; 7 microns is ~ 10-2 while on particles of <; 1 microns ~ 10-6. Our data also confirmed the existence of multiple spores on a single particle. The results from these studies are essential for developing a reliable biological contamination transport model for meeting the Planetary Protection requirements for future Mars Missions.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"22 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantitative determination of bacterial spore association with particles in cleanroom environment\",\"authors\":\"Ying Lin\",\"doi\":\"10.1109/AERO.2012.6187054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to establish a creditable biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to determine the quantity and size distribution of bacterial spore containing particles on the surface of spacecraft in cleanroom. We conducted an extensive set of air and surface sampling in indoor, outdoor, and cleanroom environments and determined the ratios of the number of spore forming bacteria to that of their dust particle carriers of various sizes. We found that the average number of cultivable spore forming bacteria on particles of >; 7 microns is ~ 10-2 while on particles of <; 1 microns ~ 10-6. Our data also confirmed the existence of multiple spores on a single particle. The results from these studies are essential for developing a reliable biological contamination transport model for meeting the Planetary Protection requirements for future Mars Missions.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"22 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了建立可靠的生物污染传输模型,预测航天器装配过程和着陆后的交叉污染风险,确定航天器洁净室表面含细菌孢子颗粒的数量和大小分布非常重要。我们在室内,室外和洁净室环境中进行了广泛的空气和表面采样,并确定了孢子形成细菌的数量与其不同大小的粉尘颗粒载体的数量之比。结果表明:颗粒上可培养孢子形成细菌的平均数量>;7微米为~ 10-2,而<;1微米~ 10-6。我们的数据还证实了单个粒子上存在多个孢子。这些研究的结果对于开发可靠的生物污染传输模型以满足未来火星任务的行星保护要求至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative determination of bacterial spore association with particles in cleanroom environment
In order to establish a creditable biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to determine the quantity and size distribution of bacterial spore containing particles on the surface of spacecraft in cleanroom. We conducted an extensive set of air and surface sampling in indoor, outdoor, and cleanroom environments and determined the ratios of the number of spore forming bacteria to that of their dust particle carriers of various sizes. We found that the average number of cultivable spore forming bacteria on particles of >; 7 microns is ~ 10-2 while on particles of <; 1 microns ~ 10-6. Our data also confirmed the existence of multiple spores on a single particle. The results from these studies are essential for developing a reliable biological contamination transport model for meeting the Planetary Protection requirements for future Mars Missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信