Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen
{"title":"车辆网络中的联合切换算法研究","authors":"Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen","doi":"10.1155/2016/3190264","DOIUrl":null,"url":null,"abstract":"With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"28 10 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Joint Handoff Algorithm in Vehicles Networks\",\"authors\":\"Yuming Bi, Lei Tian, Mengmeng Liu, Zhenzi Liu, Wei Chen\",\"doi\":\"10.1155/2016/3190264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"28 10 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/3190264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/3190264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Research on Joint Handoff Algorithm in Vehicles Networks
With the communication services evolution from the fourth generation (4G) to the fifth generation (5G), we are going to face diverse challenges from the new network systems. On the one hand, seamless handoff is expected to integrate universal access among various network mechanisms. On the other hand, a variety of 5G technologies will complement each other to provide ubiquitous high speed wireless connectivity. Because the current wireless network cannot support the handoff among Wireless Access for Vehicular Environment (WAVE), WiMAX, and LTE flexibly, the paper provides an advanced handoff algorithm to solve this problem. Firstly, the received signal strength is classified, and the vehicle speed and data rate under different channel conditions are optimized. Then, the optimal network is selected for handoff. Simulation results show that the proposed algorithm can well adapt to high speed environment, guarantee flexible and reasonable vehicles access to a variety of networks, and prevent ping-pong handoff and link access failure effectively.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.