符号概率模型检查的双处理器并行化

M. Kwiatkowska, D. Parker, Yi Zhang, Rashid Mehmood
{"title":"符号概率模型检查的双处理器并行化","authors":"M. Kwiatkowska, D. Parker, Yi Zhang, Rashid Mehmood","doi":"10.1109/MASCOT.2004.1348189","DOIUrl":null,"url":null,"abstract":"We describe the dual-processor parallelisation of a symbolic (BDD-based) implementation of probabilistic model checking. We use multi-terminal BDDs (binary decision diagrams), which allow a compact representation of large, structured Markov chains. We show that they also provide a convenient block decomposition of the Markov chain which we use to implement a parallelised version of the Gauss-Seidel iterative method. We provide experimental results on a range of case studies to illustrate the effectiveness of the technique, observing an average speed-up of 1.8 with two processors. Furthermore, we present an optimisation for our method based on preconditioning.","PeriodicalId":32394,"journal":{"name":"Performance","volume":"19 1","pages":"123-130"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Dual-processor parallelisation of symbolic probabilistic model checking\",\"authors\":\"M. Kwiatkowska, D. Parker, Yi Zhang, Rashid Mehmood\",\"doi\":\"10.1109/MASCOT.2004.1348189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the dual-processor parallelisation of a symbolic (BDD-based) implementation of probabilistic model checking. We use multi-terminal BDDs (binary decision diagrams), which allow a compact representation of large, structured Markov chains. We show that they also provide a convenient block decomposition of the Markov chain which we use to implement a parallelised version of the Gauss-Seidel iterative method. We provide experimental results on a range of case studies to illustrate the effectiveness of the technique, observing an average speed-up of 1.8 with two processors. Furthermore, we present an optimisation for our method based on preconditioning.\",\"PeriodicalId\":32394,\"journal\":{\"name\":\"Performance\",\"volume\":\"19 1\",\"pages\":\"123-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOT.2004.1348189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2004.1348189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们描述了概率模型检查的符号(基于bdd)实现的双处理器并行化。我们使用多终端bdd(二进制决策图),它允许大型结构化马尔可夫链的紧凑表示。我们表明,它们还提供了一个方便的马尔可夫链块分解,我们使用它来实现高斯-塞德尔迭代方法的并行化版本。我们提供了一系列案例研究的实验结果,以说明该技术的有效性,观察到两个处理器的平均加速速度为1.8。此外,我们提出了一种基于预处理的方法优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-processor parallelisation of symbolic probabilistic model checking
We describe the dual-processor parallelisation of a symbolic (BDD-based) implementation of probabilistic model checking. We use multi-terminal BDDs (binary decision diagrams), which allow a compact representation of large, structured Markov chains. We show that they also provide a convenient block decomposition of the Markov chain which we use to implement a parallelised version of the Gauss-Seidel iterative method. We provide experimental results on a range of case studies to illustrate the effectiveness of the technique, observing an average speed-up of 1.8 with two processors. Furthermore, we present an optimisation for our method based on preconditioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信