{"title":"高通量尺寸控制微滴生成","authors":"S. Shoji, D. Yoon, D. Tanaka, T. Sekiguchi","doi":"10.1109/Transducers50396.2021.9495486","DOIUrl":null,"url":null,"abstract":"For high throughput size controllable micro droplet generation, a three step half and half size/volume division of source droplet device using three stage cascade channel is introduced. Passive and active size/volume ratio controllable source droplet division devises are reported next. Finally, two types of microdroplet (daughter) generation devices using hydrodynamic droplet breakup of source droplet (mother) are described.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"1 1","pages":"206-208"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Throughput Size Controlled Microdroplet Generation\",\"authors\":\"S. Shoji, D. Yoon, D. Tanaka, T. Sekiguchi\",\"doi\":\"10.1109/Transducers50396.2021.9495486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For high throughput size controllable micro droplet generation, a three step half and half size/volume division of source droplet device using three stage cascade channel is introduced. Passive and active size/volume ratio controllable source droplet division devises are reported next. Finally, two types of microdroplet (daughter) generation devices using hydrodynamic droplet breakup of source droplet (mother) are described.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"1 1\",\"pages\":\"206-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Throughput Size Controlled Microdroplet Generation
For high throughput size controllable micro droplet generation, a three step half and half size/volume division of source droplet device using three stage cascade channel is introduced. Passive and active size/volume ratio controllable source droplet division devises are reported next. Finally, two types of microdroplet (daughter) generation devices using hydrodynamic droplet breakup of source droplet (mother) are described.