{"title":"基于树枝生长特性的智能仿生优化算法","authors":"Fei Tang","doi":"10.4018/ijcini.20210401.oa3","DOIUrl":null,"url":null,"abstract":"To improve the performance of bionic algorithms, an intelligent bionic optimization algorithm is proposed based on the morphological characteristics of trees growing toward light. The growth organ of the tree is mapped into the coding of the tree growth algorithm, and the entire tree is formed by selecting the fastest growing individual to form the next level of the tree. When the tree growth reaches a certain level, the individual code of the shoot tip is added to enhance the search ability of the individual shoot tip in the growth space of the entire tree. This method achieves a near-optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function. The experimental results show that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm or the ant colony algorithm.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"87 9 1","pages":"34-46"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intelligent Bionic Optimization Algorithm Based on the Growth Characteristics of Tree Branches\",\"authors\":\"Fei Tang\",\"doi\":\"10.4018/ijcini.20210401.oa3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the performance of bionic algorithms, an intelligent bionic optimization algorithm is proposed based on the morphological characteristics of trees growing toward light. The growth organ of the tree is mapped into the coding of the tree growth algorithm, and the entire tree is formed by selecting the fastest growing individual to form the next level of the tree. When the tree growth reaches a certain level, the individual code of the shoot tip is added to enhance the search ability of the individual shoot tip in the growth space of the entire tree. This method achieves a near-optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function. The experimental results show that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm or the ant colony algorithm.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"87 9 1\",\"pages\":\"34-46\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20210401.oa3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210401.oa3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Intelligent Bionic Optimization Algorithm Based on the Growth Characteristics of Tree Branches
To improve the performance of bionic algorithms, an intelligent bionic optimization algorithm is proposed based on the morphological characteristics of trees growing toward light. The growth organ of the tree is mapped into the coding of the tree growth algorithm, and the entire tree is formed by selecting the fastest growing individual to form the next level of the tree. When the tree growth reaches a certain level, the individual code of the shoot tip is added to enhance the search ability of the individual shoot tip in the growth space of the entire tree. This method achieves a near-optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function. The experimental results show that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm or the ant colony algorithm.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.