Ahmad Alheloo, J. John, Omar Albadwawi, Ali Almheiri, Hebatalla Alhamadani, Shaikha Hassan, A. Alnuaimi
{"title":"在沙漠条件下安装了4.6年的薄膜光伏组件的室内特性","authors":"Ahmad Alheloo, J. John, Omar Albadwawi, Ali Almheiri, Hebatalla Alhamadani, Shaikha Hassan, A. Alnuaimi","doi":"10.1109/PVSC45281.2020.9300986","DOIUrl":null,"url":null,"abstract":"Degradation of commercially available CdTe and CIGS PV modules installed in the desert conditions, are not well understood, because they have been in operation for relatively short period compared to crystalline silicon PV technology. In this paper, we investigate the degradation rate of both these thin-film technologies using indoor characterization methods. The calculated annual degradation rate of CdTe technology (1.3-2.2 percent/year) is lower than CIGS (5.3-8.8 /year). The main cause of this degradation is the reduction in fill factor caused by formation of permanent shunts. These shunts were characterized using Electroluminescence and microscopic imaging.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"34 1","pages":"1489-1493"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Indoor characterisation of thin-film PV modules installed for 4.6 years in desert conditions\",\"authors\":\"Ahmad Alheloo, J. John, Omar Albadwawi, Ali Almheiri, Hebatalla Alhamadani, Shaikha Hassan, A. Alnuaimi\",\"doi\":\"10.1109/PVSC45281.2020.9300986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradation of commercially available CdTe and CIGS PV modules installed in the desert conditions, are not well understood, because they have been in operation for relatively short period compared to crystalline silicon PV technology. In this paper, we investigate the degradation rate of both these thin-film technologies using indoor characterization methods. The calculated annual degradation rate of CdTe technology (1.3-2.2 percent/year) is lower than CIGS (5.3-8.8 /year). The main cause of this degradation is the reduction in fill factor caused by formation of permanent shunts. These shunts were characterized using Electroluminescence and microscopic imaging.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"34 1\",\"pages\":\"1489-1493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indoor characterisation of thin-film PV modules installed for 4.6 years in desert conditions
Degradation of commercially available CdTe and CIGS PV modules installed in the desert conditions, are not well understood, because they have been in operation for relatively short period compared to crystalline silicon PV technology. In this paper, we investigate the degradation rate of both these thin-film technologies using indoor characterization methods. The calculated annual degradation rate of CdTe technology (1.3-2.2 percent/year) is lower than CIGS (5.3-8.8 /year). The main cause of this degradation is the reduction in fill factor caused by formation of permanent shunts. These shunts were characterized using Electroluminescence and microscopic imaging.