平方和与稀疏半定规划

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Grigoriy Blekherman, Kevin Shu
{"title":"平方和与稀疏半定规划","authors":"Grigoriy Blekherman, Kevin Shu","doi":"10.1137/20m1376170","DOIUrl":null,"url":null,"abstract":"We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real variety $X$ is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of squares on $X$ are also natural objects in positive semidefinite matrix completion. Nonnegative quadratic forms over $X$ naturally correspond to partially specified matrices where all of the fully specified square blocks are PSD, and sums of squares quadratic forms naturally correspond to partially specified matrices which can be completed to a PSD matrix. We show quantitative results on approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite programming.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sums of Squares and Sparse Semidefinite Programming\",\"authors\":\"Grigoriy Blekherman, Kevin Shu\",\"doi\":\"10.1137/20m1376170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real variety $X$ is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of squares on $X$ are also natural objects in positive semidefinite matrix completion. Nonnegative quadratic forms over $X$ naturally correspond to partially specified matrices where all of the fully specified square blocks are PSD, and sums of squares quadratic forms naturally correspond to partially specified matrices which can be completed to a PSD matrix. We show quantitative results on approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite programming.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1376170\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1376170","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了两个看似不相关的问题:实变量上的非负多项式与平方和的关系,以及稀疏半定规划。当一个实变量$X$由一个二次无平方的单项理想定义时,这种联系是很自然的。在这种情况下,$X$上的非负多项式和平方和也是正半定矩阵补全中的自然对象。$X$上的非负二次型自然对应于部分指定矩阵,其中所有的完全指定方形块都是PSD,而平方和二次型自然对应于部分指定矩阵,可以完成为PSD矩阵。我们给出了用平方和逼近非负多项式的定量结果,这导致了在稀疏半定规划中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sums of Squares and Sparse Semidefinite Programming
We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real variety $X$ is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of squares on $X$ are also natural objects in positive semidefinite matrix completion. Nonnegative quadratic forms over $X$ naturally correspond to partially specified matrices where all of the fully specified square blocks are PSD, and sums of squares quadratic forms naturally correspond to partially specified matrices which can be completed to a PSD matrix. We show quantitative results on approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信