{"title":"合取规则路径查询的逼近和语义树宽度","authors":"Diego Figueira, Rémi Morvan","doi":"10.48550/arXiv.2212.01679","DOIUrl":null,"url":null,"abstract":"We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\\'o, Romero, and Vardi has shown decidability for the case $k=1$, and here we show that decidability in fact holds for any arbitrary $k>1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \\dotsb + a_n)$ we show that the complexity of the problem drops to $\\Pi_2^p$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$.","PeriodicalId":90482,"journal":{"name":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","volume":"848 1","pages":"15:1-15:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximation and Semantic Tree-width of Conjunctive Regular Path Queries\",\"authors\":\"Diego Figueira, Rémi Morvan\",\"doi\":\"10.48550/arXiv.2212.01679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\\\\'o, Romero, and Vardi has shown decidability for the case $k=1$, and here we show that decidability in fact holds for any arbitrary $k>1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \\\\dotsb + a_n)$ we show that the complexity of the problem drops to $\\\\Pi_2^p$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$.\",\"PeriodicalId\":90482,\"journal\":{\"name\":\"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory\",\"volume\":\"848 1\",\"pages\":\"15:1-15:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.01679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.01679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation and Semantic Tree-width of Conjunctive Regular Path Queries
We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\'o, Romero, and Vardi has shown decidability for the case $k=1$, and here we show that decidability in fact holds for any arbitrary $k>1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \dotsb + a_n)$ we show that the complexity of the problem drops to $\Pi_2^p$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$.