一种生成整数幂和公式的新算法

Maximilian J. Wang, S. Goel, Guifen Mao
{"title":"一种生成整数幂和公式的新算法","authors":"Maximilian J. Wang, S. Goel, Guifen Mao","doi":"10.1145/2638404.2638525","DOIUrl":null,"url":null,"abstract":"A new algorithm is proposed to generate a formula for the sum of integer powers Sp(n) = Σnk=1kp for an arbitrary positive integer p. This formula plays an important role in scientific computation, numerical analysis, complexity analysis, academic research, and even in teaching calculus. Faulhaber's formula indicates that Sp(n) can be expressed as a (p + 1)th degree polynomial. A special linear system is constructed and then solved to fit this polynomial through the Gaussian Elimination method. This study shows that this new algorithm is more efficient, having a polynomial time O(p3) complexity. In the implementation procedure, this algorithm does not use any complicated Bernoulli numbers, Stirling numbers, integrals, differentiations, or recursion methods. Maple software code is used to illustrate how the new algorithm works, and the coding of this algorithm has only five lines. For a power of 20 or 100, the computer execution CPU (Intel Processor running @ 3GHz) time takes only 0.062 seconds or 16.396 seconds respectively.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new algorithm to generate a formula for the sum of integer powers\",\"authors\":\"Maximilian J. Wang, S. Goel, Guifen Mao\",\"doi\":\"10.1145/2638404.2638525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm is proposed to generate a formula for the sum of integer powers Sp(n) = Σnk=1kp for an arbitrary positive integer p. This formula plays an important role in scientific computation, numerical analysis, complexity analysis, academic research, and even in teaching calculus. Faulhaber's formula indicates that Sp(n) can be expressed as a (p + 1)th degree polynomial. A special linear system is constructed and then solved to fit this polynomial through the Gaussian Elimination method. This study shows that this new algorithm is more efficient, having a polynomial time O(p3) complexity. In the implementation procedure, this algorithm does not use any complicated Bernoulli numbers, Stirling numbers, integrals, differentiations, or recursion methods. Maple software code is used to illustrate how the new algorithm works, and the coding of this algorithm has only five lines. For a power of 20 or 100, the computer execution CPU (Intel Processor running @ 3GHz) time takes only 0.062 seconds or 16.396 seconds respectively.\",\"PeriodicalId\":91384,\"journal\":{\"name\":\"Proceedings of the 2014 ACM Southeast Regional Conference\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM Southeast Regional Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2638404.2638525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638404.2638525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对任意正整数p,提出了一种生成整数幂和Sp(n) = Σnk=1kp公式的新算法,该公式在科学计算、数值分析、复杂性分析、学术研究甚至微积分教学中都有重要作用。Faulhaber公式表明Sp(n)可以表示为(p + 1)次多项式。构造了一个特殊的线性系统,并通过高斯消去法对其进行拟合。研究表明,该算法具有多项式时间(O(p3))的复杂度,具有更高的效率。在实现过程中,本算法不使用任何复杂的伯努利数、斯特林数、积分、微分、递归等方法。使用Maple软件代码来说明新算法的工作原理,该算法的编码只有五行。对于20或100的功率,计算机执行CPU(英特尔处理器运行@ 3GHz)的时间分别为0.062秒或16.396秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new algorithm to generate a formula for the sum of integer powers
A new algorithm is proposed to generate a formula for the sum of integer powers Sp(n) = Σnk=1kp for an arbitrary positive integer p. This formula plays an important role in scientific computation, numerical analysis, complexity analysis, academic research, and even in teaching calculus. Faulhaber's formula indicates that Sp(n) can be expressed as a (p + 1)th degree polynomial. A special linear system is constructed and then solved to fit this polynomial through the Gaussian Elimination method. This study shows that this new algorithm is more efficient, having a polynomial time O(p3) complexity. In the implementation procedure, this algorithm does not use any complicated Bernoulli numbers, Stirling numbers, integrals, differentiations, or recursion methods. Maple software code is used to illustrate how the new algorithm works, and the coding of this algorithm has only five lines. For a power of 20 or 100, the computer execution CPU (Intel Processor running @ 3GHz) time takes only 0.062 seconds or 16.396 seconds respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信