laguerre - konhauser型矩阵多项式的拟单一性和可操作恒等式及其应用

IF 0.3 Q4 MATHEMATICS
M. Bin-Saad, Fadhle B. F. Mohsen
{"title":"laguerre - konhauser型矩阵多项式的拟单一性和可操作恒等式及其应用","authors":"M. Bin-Saad, Fadhle B. F. Mohsen","doi":"10.12697/ACUTM.2018.22.02","DOIUrl":null,"url":null,"abstract":"It is shown that an appropriate combination of methods, relevant to matrix polynomials and to operational calculus can be a very useful tool to establish and treat a new class of matrix Laguerre–Konhauser polynomials. We explore the formal properties of the operational identities to derive a number of properties of the new class of Laguerre–Konhauser matrix polynomials and discuss the links with classical polynomials.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"15 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-monomiality and operational identities for Laguerre–Konhauser-type matrix polynomials and their applications\",\"authors\":\"M. Bin-Saad, Fadhle B. F. Mohsen\",\"doi\":\"10.12697/ACUTM.2018.22.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that an appropriate combination of methods, relevant to matrix polynomials and to operational calculus can be a very useful tool to establish and treat a new class of matrix Laguerre–Konhauser polynomials. We explore the formal properties of the operational identities to derive a number of properties of the new class of Laguerre–Konhauser matrix polynomials and discuss the links with classical polynomials.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

结果表明,适当地结合矩阵多项式和运算演算的方法,可以成为建立和处理一类新的矩阵Laguerre-Konhauser多项式的一个非常有用的工具。探讨了运算恒等式的形式性质,得到了一类新的Laguerre-Konhauser矩阵多项式的若干性质,并讨论了它与经典多项式的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-monomiality and operational identities for Laguerre–Konhauser-type matrix polynomials and their applications
It is shown that an appropriate combination of methods, relevant to matrix polynomials and to operational calculus can be a very useful tool to establish and treat a new class of matrix Laguerre–Konhauser polynomials. We explore the formal properties of the operational identities to derive a number of properties of the new class of Laguerre–Konhauser matrix polynomials and discuss the links with classical polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信