干扰条件下瑞利块衰落AWGN信道密钥生成研究

A. Chorti, E. Belmega
{"title":"干扰条件下瑞利块衰落AWGN信道密钥生成研究","authors":"A. Chorti, E. Belmega","doi":"10.1109/ICC.2017.7996660","DOIUrl":null,"url":null,"abstract":"Jamming attacks have been shown to disrupt secret key generation (SKG) in systems that exploit the reciprocity of the wireless medium to generate symmetric keys at two remote locations through public discussion. In this study, the use of frequency hopping/spreading in Rayleigh block fading additive white Gaussian noise (BF-AWGN) channels is investigated as a means to counteract such attacks. The competitive interaction between a pair of legitimate users and a jammer is formulated as a zero-sum game and the corresponding Nash equilibria (NE) are characterized analytically and in closed form. It is found that the jammer's optimal strategy is to spread its power across the entire spectrum. On the contrary, the pair of legitimate users should use frequency spreading only in favorable transmission conditions, and frequency hopping otherwise (e.g., low signal to jamming power ratio). Numerical results show that frequency hopping/spreading in BF-AWGN channels is an effective technique for combating jamming attacks in SKG systems; a modest increase of the system bandwidth can substantially increase the SKG rates.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Secret key generation in Rayleigh block fading AWGN channels under jamming attacks\",\"authors\":\"A. Chorti, E. Belmega\",\"doi\":\"10.1109/ICC.2017.7996660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jamming attacks have been shown to disrupt secret key generation (SKG) in systems that exploit the reciprocity of the wireless medium to generate symmetric keys at two remote locations through public discussion. In this study, the use of frequency hopping/spreading in Rayleigh block fading additive white Gaussian noise (BF-AWGN) channels is investigated as a means to counteract such attacks. The competitive interaction between a pair of legitimate users and a jammer is formulated as a zero-sum game and the corresponding Nash equilibria (NE) are characterized analytically and in closed form. It is found that the jammer's optimal strategy is to spread its power across the entire spectrum. On the contrary, the pair of legitimate users should use frequency spreading only in favorable transmission conditions, and frequency hopping otherwise (e.g., low signal to jamming power ratio). Numerical results show that frequency hopping/spreading in BF-AWGN channels is an effective technique for combating jamming attacks in SKG systems; a modest increase of the system bandwidth can substantially increase the SKG rates.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7996660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

干扰攻击已被证明会破坏系统中的密钥生成(SKG),该系统利用无线介质的互易性,通过公开讨论在两个远程位置生成对称密钥。在本研究中,研究了在瑞利块衰落加性高斯白噪声(BF-AWGN)信道中使用跳频/扩频作为对抗这种攻击的手段。一对合法用户和干扰者之间的竞争互动被表述为零和游戏,相应的纳什均衡(NE)被分析并以封闭形式表征。研究发现,干扰者的最佳策略是在整个频谱上分散其功率。相反,合法用户对只有在有利的传输条件下才应使用扩频,否则应使用跳频(如低信噪比)。数值结果表明,在BF-AWGN信道中,跳频/扩频是对抗SKG系统干扰攻击的有效技术;适度增加系统带宽可以大大提高SKG速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secret key generation in Rayleigh block fading AWGN channels under jamming attacks
Jamming attacks have been shown to disrupt secret key generation (SKG) in systems that exploit the reciprocity of the wireless medium to generate symmetric keys at two remote locations through public discussion. In this study, the use of frequency hopping/spreading in Rayleigh block fading additive white Gaussian noise (BF-AWGN) channels is investigated as a means to counteract such attacks. The competitive interaction between a pair of legitimate users and a jammer is formulated as a zero-sum game and the corresponding Nash equilibria (NE) are characterized analytically and in closed form. It is found that the jammer's optimal strategy is to spread its power across the entire spectrum. On the contrary, the pair of legitimate users should use frequency spreading only in favorable transmission conditions, and frequency hopping otherwise (e.g., low signal to jamming power ratio). Numerical results show that frequency hopping/spreading in BF-AWGN channels is an effective technique for combating jamming attacks in SKG systems; a modest increase of the system bandwidth can substantially increase the SKG rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信