量子内插系综:双正交多项式和平均熵

Pub Date : 2021-03-07 DOI:10.1142/S2010326322500551
Lu Wei, N. Witte
{"title":"量子内插系综:双正交多项式和平均熵","authors":"Lu Wei, N. Witte","doi":"10.1142/S2010326322500551","DOIUrl":null,"url":null,"abstract":"The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert-Schmidt and Bures-Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the $\\theta$-deformed Cauchy-Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when $\\theta$ assumes positive integer values.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Interpolating Ensemble: Bi-orthogonal Polynomials and Average Entropies\",\"authors\":\"Lu Wei, N. Witte\",\"doi\":\"10.1142/S2010326322500551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert-Schmidt and Bures-Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the $\\\\theta$-deformed Cauchy-Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when $\\\\theta$ assumes positive integer values.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326322500551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密度矩阵形式化是研究量子信息处理中各种问题的基本工具。在密度矩阵的空间中,最著名的测度是Hilbert-Schmidt和Bures-Hall系综。在这项工作中,在这两个主要系综之间插入的系综的量子纯度和冯·诺伊曼熵的平均值被明确地计算为有限维系统。本文提出的插值系综是$\theta$变形Cauchy-Laguerre二矩阵模型的专一化,并给出了该系综的新结果,包括当$\theta$为正整数时,其相关的双正交多项式所满足的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quantum Interpolating Ensemble: Bi-orthogonal Polynomials and Average Entropies
The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert-Schmidt and Bures-Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the $\theta$-deformed Cauchy-Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when $\theta$ assumes positive integer values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信