Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen
{"title":"微型振动电场传感器的设计与仿真","authors":"Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen","doi":"10.1109/ICSENS.2004.1426495","DOIUrl":null,"url":null,"abstract":"This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.","PeriodicalId":20476,"journal":{"name":"Proceedings of IEEE Sensors, 2004.","volume":"97 1","pages":"1589-1592 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design and simulation of miniature vibrating electric field sensors\",\"authors\":\"Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen\",\"doi\":\"10.1109/ICSENS.2004.1426495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.\",\"PeriodicalId\":20476,\"journal\":{\"name\":\"Proceedings of IEEE Sensors, 2004.\",\"volume\":\"97 1\",\"pages\":\"1589-1592 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2004.1426495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2004.1426495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and simulation of miniature vibrating electric field sensors
This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.