微型振动电场传感器的设计与仿真

Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen
{"title":"微型振动电场传感器的设计与仿真","authors":"Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen","doi":"10.1109/ICSENS.2004.1426495","DOIUrl":null,"url":null,"abstract":"This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.","PeriodicalId":20476,"journal":{"name":"Proceedings of IEEE Sensors, 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Design and simulation of miniature vibrating electric field sensors\",\"authors\":\"Chao Gong, S. Xia, Kai Deng, Q. Bai, Shaofeng Chen\",\"doi\":\"10.1109/ICSENS.2004.1426495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.\",\"PeriodicalId\":20476,\"journal\":{\"name\":\"Proceedings of IEEE Sensors, 2004.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2004.1426495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2004.1426495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

介绍了基于微机电系统(MEMS)技术的两种新型微型振动电场传感器的设计与优化。这两种新型传感器具有不同的结构和振动方式。该传感器的工作原理为电子电荷感应,其体积远远小于其他类型的电荷感应电子束,如场磨。在小型化的过程中,信号大大减少,需要一个高灵敏度的电路来检测信号。精心设计的电极可以增加输出电流的幅值,使检测电路简化,提高信噪比。为此,采用有限元法对不同结构参数和不同振动方式的激振系统进行了计算机仿真。实验证明,该传感器结构是可行的,信号是可测量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of miniature vibrating electric field sensors
This paper presents the designs and optimizations of two kinds of novel miniature vibrating electric field sensors (EFS) based on microelectromechanical systems (MEMS) technology. The two kinds of new sensors have different structures and vibrating methods. The volume of the new sensors with operating principle of electron charge induction are much smaller than other types of charge-induced EFS such as field-mills. In miniaturizing, the signal is reduced enormously and a highly sensitive circuit is needed to detect the signal. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Therefore, computer simulations for different structural parameters of the EFS and different vibrating methods have been carried out by the finite element method (FEM). It is proved that the new sensor structure can be implemented and the signal is measurable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信