Luis Zabala, A. Ferro, Rubén Solozabal, Bego Blanco
{"title":"基于广义随机Petri网的网络传感器包处理系统性能分析","authors":"Luis Zabala, A. Ferro, Rubén Solozabal, Bego Blanco","doi":"10.1145/3243046.3243051","DOIUrl":null,"url":null,"abstract":"This paper describes a modeling based on Generalized Stochastic Petri Nets (GSPN) to analyze the performance of a network probing node in terms of throughput. The probing node is part of a distributed monitoring system. In this environment, the use of multiprocessor and multicore systems, as well as the parallelization of applications, is aimed at improving the node performance. Petri nets allow not only to represent the parallelization feature, but also to include the main events identified in the system: the packet arrival and a two-stage processing. The two-stage processing consists of a first stage in which packet capturing functionalities are performed, and a second stage in which a deeper packet treatment is performed. In addition, the Petri net model can reproduce a shared buffer control mechanism to ensure the integrity of the data. After detailing all the model components, the verification and validation of the model are done by using a simulation tool. With this model, it is expected to estimate the efficiency of the probing node early in the design and development stages.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":"111 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of a Network Sensor's Packet Processing System using Generalized Stochastic Petri Nets\",\"authors\":\"Luis Zabala, A. Ferro, Rubén Solozabal, Bego Blanco\",\"doi\":\"10.1145/3243046.3243051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a modeling based on Generalized Stochastic Petri Nets (GSPN) to analyze the performance of a network probing node in terms of throughput. The probing node is part of a distributed monitoring system. In this environment, the use of multiprocessor and multicore systems, as well as the parallelization of applications, is aimed at improving the node performance. Petri nets allow not only to represent the parallelization feature, but also to include the main events identified in the system: the packet arrival and a two-stage processing. The two-stage processing consists of a first stage in which packet capturing functionalities are performed, and a second stage in which a deeper packet treatment is performed. In addition, the Petri net model can reproduce a shared buffer control mechanism to ensure the integrity of the data. After detailing all the model components, the verification and validation of the model are done by using a simulation tool. With this model, it is expected to estimate the efficiency of the probing node early in the design and development stages.\",\"PeriodicalId\":55557,\"journal\":{\"name\":\"Ad Hoc & Sensor Wireless Networks\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc & Sensor Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3243046.3243051\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3243046.3243051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Performance Analysis of a Network Sensor's Packet Processing System using Generalized Stochastic Petri Nets
This paper describes a modeling based on Generalized Stochastic Petri Nets (GSPN) to analyze the performance of a network probing node in terms of throughput. The probing node is part of a distributed monitoring system. In this environment, the use of multiprocessor and multicore systems, as well as the parallelization of applications, is aimed at improving the node performance. Petri nets allow not only to represent the parallelization feature, but also to include the main events identified in the system: the packet arrival and a two-stage processing. The two-stage processing consists of a first stage in which packet capturing functionalities are performed, and a second stage in which a deeper packet treatment is performed. In addition, the Petri net model can reproduce a shared buffer control mechanism to ensure the integrity of the data. After detailing all the model components, the verification and validation of the model are done by using a simulation tool. With this model, it is expected to estimate the efficiency of the probing node early in the design and development stages.
期刊介绍:
Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.