计算锁相环的半平面拉进范围

John L. Stensby
{"title":"计算锁相环的半平面拉进范围","authors":"John L. Stensby","doi":"10.1109/SSST.2010.5442810","DOIUrl":null,"url":null,"abstract":"A second-order PLL based on a triangular-characteristic phase detector and lead-lag loop filter is found in many applications where simplicity and economics are important. For these loops, the half-plane pull-in range Ω2 is of interest. In the existing literature, an algorithm is described for approximating Ω2; it requires the numerical integration of the nonlinear differential equation that describes the PLL. This numerical integration requirement is removed here by the development of an exact formula for Ω2.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"6 1","pages":"323-328"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the half-plane pull-in range of a PLL\",\"authors\":\"John L. Stensby\",\"doi\":\"10.1109/SSST.2010.5442810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A second-order PLL based on a triangular-characteristic phase detector and lead-lag loop filter is found in many applications where simplicity and economics are important. For these loops, the half-plane pull-in range Ω2 is of interest. In the existing literature, an algorithm is described for approximating Ω2; it requires the numerical integration of the nonlinear differential equation that describes the PLL. This numerical integration requirement is removed here by the development of an exact formula for Ω2.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"6 1\",\"pages\":\"323-328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于三角形特征鉴相器和超前滞后环滤波器的二阶锁相环在许多简单和经济重要的应用中被发现。对于这些循环,半平面拉入范围Ω2是有趣的。在现有文献中,描述了一种近似Ω2的算法;它需要对描述锁相环的非线性微分方程进行数值积分。这个数值积分的要求在这里通过对Ω2的精确公式的发展而消除了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the half-plane pull-in range of a PLL
A second-order PLL based on a triangular-characteristic phase detector and lead-lag loop filter is found in many applications where simplicity and economics are important. For these loops, the half-plane pull-in range Ω2 is of interest. In the existing literature, an algorithm is described for approximating Ω2; it requires the numerical integration of the nonlinear differential equation that describes the PLL. This numerical integration requirement is removed here by the development of an exact formula for Ω2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信