{"title":"(2103-6517)基于可拓原理的犹豫模糊数的算术运算与排序","authors":"M. Ranjbar, S. M. Miri, S. Effati","doi":"10.22111/IJFS.2021.6282","DOIUrl":null,"url":null,"abstract":"A hesitant fuzzy number (HFN) is important as a generalization of the fuzzy number for hesitant fuzzy analysis and takes some applications that were discussed in recent literature. In this paper, we develop the hesitant fuzzy arithmetic, which is based on the extension principle for hesitant fuzzy sets. Employing this principle, standard arithmetic operations on fuzzy numbers are extended to HFNs and we show that the outcome of these operations on two HFNs are an HFN.Also we use the extension principle in HFSs for the ranking of HFNs, which may be an interesting topic. In this paper, we show that the HFNs can be ordered in a natural way. To introduce a meaningful ordering of HFNs, we use a newlattice operation on HFNs based upon extension principle and defining the Hamming distance on them. Finally, the applications of them are explained on optimization and decision-making problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"(2103-6517) Arithmetic operations and ranking of hesitant fuzzy numbers by extension principle\",\"authors\":\"M. Ranjbar, S. M. Miri, S. Effati\",\"doi\":\"10.22111/IJFS.2021.6282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hesitant fuzzy number (HFN) is important as a generalization of the fuzzy number for hesitant fuzzy analysis and takes some applications that were discussed in recent literature. In this paper, we develop the hesitant fuzzy arithmetic, which is based on the extension principle for hesitant fuzzy sets. Employing this principle, standard arithmetic operations on fuzzy numbers are extended to HFNs and we show that the outcome of these operations on two HFNs are an HFN.Also we use the extension principle in HFSs for the ranking of HFNs, which may be an interesting topic. In this paper, we show that the HFNs can be ordered in a natural way. To introduce a meaningful ordering of HFNs, we use a newlattice operation on HFNs based upon extension principle and defining the Hamming distance on them. Finally, the applications of them are explained on optimization and decision-making problems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6282\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
(2103-6517) Arithmetic operations and ranking of hesitant fuzzy numbers by extension principle
A hesitant fuzzy number (HFN) is important as a generalization of the fuzzy number for hesitant fuzzy analysis and takes some applications that were discussed in recent literature. In this paper, we develop the hesitant fuzzy arithmetic, which is based on the extension principle for hesitant fuzzy sets. Employing this principle, standard arithmetic operations on fuzzy numbers are extended to HFNs and we show that the outcome of these operations on two HFNs are an HFN.Also we use the extension principle in HFSs for the ranking of HFNs, which may be an interesting topic. In this paper, we show that the HFNs can be ordered in a natural way. To introduce a meaningful ordering of HFNs, we use a newlattice operation on HFNs based upon extension principle and defining the Hamming distance on them. Finally, the applications of them are explained on optimization and decision-making problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.