{"title":"广义Lucas分量的Bartz-Marlewski方程","authors":"H. Hashim","doi":"10.5817/am2022-3-189","DOIUrl":null,"url":null,"abstract":". Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bartz-Marlewski equation with generalized Lucas components\",\"authors\":\"H. Hashim\",\"doi\":\"10.5817/am2022-3-189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-3-189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-3-189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
。令{U n} = {U n (P,Q)}和{V n} = {V n (P,Q)}分别为参数P≥1和Q∈{−1,1}时的第一类和第二类卢卡斯序列。本文给出了一种描述所谓Bartz-Marlewski方程x 2−3 xy + y 2 + x = 0,其中(x,y) = (U i,U j)或(V i,V j)且i, j≥1的解法。然后,将该方法应用于具有一定参数值的方程的完全解。
Bartz-Marlewski equation with generalized Lucas components
. Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.