广义Lucas分量的Bartz-Marlewski方程

IF 0.5 Q3 MATHEMATICS
H. Hashim
{"title":"广义Lucas分量的Bartz-Marlewski方程","authors":"H. Hashim","doi":"10.5817/am2022-3-189","DOIUrl":null,"url":null,"abstract":". Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bartz-Marlewski equation with generalized Lucas components\",\"authors\":\"H. Hashim\",\"doi\":\"10.5817/am2022-3-189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-3-189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-3-189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。令{U n} = {U n (P,Q)}和{V n} = {V n (P,Q)}分别为参数P≥1和Q∈{−1,1}时的第一类和第二类卢卡斯序列。本文给出了一种描述所谓Bartz-Marlewski方程x 2−3 xy + y 2 + x = 0,其中(x,y) = (U i,U j)或(V i,V j)且i, j≥1的解法。然后,将该方法应用于具有一定参数值的方程的完全解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bartz-Marlewski equation with generalized Lucas components
. Let { U n } = { U n ( P,Q ) } and { V n } = { V n ( P,Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P ≥ 1 and Q ∈ {− 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 − 3 xy + y 2 + x = 0 , where ( x,y ) = ( U i ,U j ) or ( V i ,V j ) with i , j ≥ 1. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信