关于franklin系统的唯一性定理

K. Navasardyan
{"title":"关于franklin系统的唯一性定理","authors":"K. Navasardyan","doi":"10.46991/pysu:a/2018.52.2.093","DOIUrl":null,"url":null,"abstract":"In this paper we prove that there exist a nontrivial Franklin series and a sequence $ M_n $ such that the partial sums $ S_{M_n} (x) $ of that series converge to 0 almost everywhere and $ \\lambda \\cdot \\text{mes} \\{ x : \\sup\\limits_{n}{\\left| S_{M_n} (x) \\right|} > \\lambda \\} \\to 0 $ as $ \\lambda \\to +\\infty $. This shows that the boundedness assumption of the ratio $ \\dfrac{ M_{n+1}}{M_n} $, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON A UNIQUENESS THEOREM FOR THE FRANKLIN SYSTEM\",\"authors\":\"K. Navasardyan\",\"doi\":\"10.46991/pysu:a/2018.52.2.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that there exist a nontrivial Franklin series and a sequence $ M_n $ such that the partial sums $ S_{M_n} (x) $ of that series converge to 0 almost everywhere and $ \\\\lambda \\\\cdot \\\\text{mes} \\\\{ x : \\\\sup\\\\limits_{n}{\\\\left| S_{M_n} (x) \\\\right|} > \\\\lambda \\\\} \\\\to 0 $ as $ \\\\lambda \\\\to +\\\\infty $. This shows that the boundedness assumption of the ratio $ \\\\dfrac{ M_{n+1}}{M_n} $, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2018.52.2.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2018.52.2.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了存在一个非平凡富兰克林级数和一个序列$ M_n $,使得该级数的部分和$ S_{M_n} (x) $几乎处处收敛于0,且$ \lambda \cdot \text{mes} \{ x : \sup\limits_{n}{\left| S_{M_n} (x) \right|} > \lambda \} \to 0 $为$ \lambda \to +\infty $。这表明在以前的论文中用来证明唯一性定理的比率$ \dfrac{ M_{n+1}}{M_n} $的有界假设是不能省略的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON A UNIQUENESS THEOREM FOR THE FRANKLIN SYSTEM
In this paper we prove that there exist a nontrivial Franklin series and a sequence $ M_n $ such that the partial sums $ S_{M_n} (x) $ of that series converge to 0 almost everywhere and $ \lambda \cdot \text{mes} \{ x : \sup\limits_{n}{\left| S_{M_n} (x) \right|} > \lambda \} \to 0 $ as $ \lambda \to +\infty $. This shows that the boundedness assumption of the ratio $ \dfrac{ M_{n+1}}{M_n} $, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信