中间乘法卷积和超几何方程

IF 0.4 Q4 MATHEMATICS
Nicolas Martin
{"title":"中间乘法卷积和超几何方程","authors":"Nicolas Martin","doi":"10.5427/jsing.2021.23k","DOIUrl":null,"url":null,"abstract":"Using a relation due to Katz linking up additive and multiplicative convolutions, we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution, following [DS13] and [Mar18a] in the additive case. Moreover, the main theorem gives a new proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":"2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Middle multiplicative convolution and hypergeometric equations\",\"authors\":\"Nicolas Martin\",\"doi\":\"10.5427/jsing.2021.23k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a relation due to Katz linking up additive and multiplicative convolutions, we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution, following [DS13] and [Mar18a] in the additive case. Moreover, the main theorem gives a new proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2021.23k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

利用Katz建立的一个关系,将可加性卷积和乘法卷积联系起来,我们明确了一些Hodge不变量通过中间乘法卷积的行为,在可加性情况下遵循[DS13]和[Mar18a]。此外,主要定理给出了Fedorov计算超几何方程Hodge不变量的结果的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Middle multiplicative convolution and hypergeometric equations
Using a relation due to Katz linking up additive and multiplicative convolutions, we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution, following [DS13] and [Mar18a] in the additive case. Moreover, the main theorem gives a new proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信