{"title":"旅行商问题的复杂性指数继续存在","authors":"D. Cvetkovic, Zorica Dražić, V. Kovacevic-Vujcic","doi":"10.2298/YJOR201121014C","DOIUrl":null,"url":null,"abstract":"We consider the symmetric traveling salesman problem (TSP) with instances represented by complete graphs G with distances between cities as edge weights. A complexity index is an invariant of an instance I by which we predict the execution time of an exact TSP algorithm for I. In the paper [5] we have considered some short edge subgraphs of G and defined several new invariants related to their connected components. Extensive computational experiments with instances on 50 vertices with the uniform distribution of integer edge weights in the interval [1,100] show that there exists correlation between the sequences of selected invariants and the sequence of execution times of the well-known TSP Solver Concorde. In this paper we extend these considerations for instances up to 100 vertices.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity indices for the traveling salesman problem continued\",\"authors\":\"D. Cvetkovic, Zorica Dražić, V. Kovacevic-Vujcic\",\"doi\":\"10.2298/YJOR201121014C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the symmetric traveling salesman problem (TSP) with instances represented by complete graphs G with distances between cities as edge weights. A complexity index is an invariant of an instance I by which we predict the execution time of an exact TSP algorithm for I. In the paper [5] we have considered some short edge subgraphs of G and defined several new invariants related to their connected components. Extensive computational experiments with instances on 50 vertices with the uniform distribution of integer edge weights in the interval [1,100] show that there exists correlation between the sequences of selected invariants and the sequence of execution times of the well-known TSP Solver Concorde. In this paper we extend these considerations for instances up to 100 vertices.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/YJOR201121014C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR201121014C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
Complexity indices for the traveling salesman problem continued
We consider the symmetric traveling salesman problem (TSP) with instances represented by complete graphs G with distances between cities as edge weights. A complexity index is an invariant of an instance I by which we predict the execution time of an exact TSP algorithm for I. In the paper [5] we have considered some short edge subgraphs of G and defined several new invariants related to their connected components. Extensive computational experiments with instances on 50 vertices with the uniform distribution of integer edge weights in the interval [1,100] show that there exists correlation between the sequences of selected invariants and the sequence of execution times of the well-known TSP Solver Concorde. In this paper we extend these considerations for instances up to 100 vertices.