隐半马尔可夫事件序列模型:在脑功能MRI序列分析中的应用

S. Faisan, L. Thoraval, J. Armspach, F. Heitz
{"title":"隐半马尔可夫事件序列模型:在脑功能MRI序列分析中的应用","authors":"S. Faisan, L. Thoraval, J. Armspach, F. Heitz","doi":"10.1109/ICIP.2002.1038166","DOIUrl":null,"url":null,"abstract":"Due to the piecewise stationarity assumption required for the observable process of a hidden Markov chain, the application of hidden Markov models (HMMs) to the analysis of event-based random processes remains intricate. For such processes, a new class of HMMs is proposed: the hidden semi-Markov event sequence model (HSMESM). In a HSMESM, the observable process is no more considered as segmental in nature but issued from a detection-characterization preprocessing step. The standard markovian formalism is adapted accordingly. Results obtained in functional MRI sequence analysis validate this novel statistical modeling approach while opening new perspectives in detection-recognition of event-based random processes.","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"64 1","pages":"I-I"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hidden semi-Markov event sequence models: application to brain functional MRI sequence analysis\",\"authors\":\"S. Faisan, L. Thoraval, J. Armspach, F. Heitz\",\"doi\":\"10.1109/ICIP.2002.1038166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the piecewise stationarity assumption required for the observable process of a hidden Markov chain, the application of hidden Markov models (HMMs) to the analysis of event-based random processes remains intricate. For such processes, a new class of HMMs is proposed: the hidden semi-Markov event sequence model (HSMESM). In a HSMESM, the observable process is no more considered as segmental in nature but issued from a detection-characterization preprocessing step. The standard markovian formalism is adapted accordingly. Results obtained in functional MRI sequence analysis validate this novel statistical modeling approach while opening new perspectives in detection-recognition of event-based random processes.\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"64 1\",\"pages\":\"I-I\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2002.1038166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2002.1038166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于隐马尔可夫链的可观测过程需要分段平稳假设,隐马尔可夫模型在基于事件的随机过程分析中的应用十分复杂。针对这类过程,提出了一类新的hmm模型:隐半马尔可夫事件序列模型(HSMESM)。在HSMESM中,可观察过程在本质上不再被认为是分段的,而是从检测表征预处理步骤发出的。标准的马尔可夫形式主义被相应地调整。在功能性MRI序列分析中获得的结果验证了这种新颖的统计建模方法,同时为基于事件的随机过程的检测识别开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden semi-Markov event sequence models: application to brain functional MRI sequence analysis
Due to the piecewise stationarity assumption required for the observable process of a hidden Markov chain, the application of hidden Markov models (HMMs) to the analysis of event-based random processes remains intricate. For such processes, a new class of HMMs is proposed: the hidden semi-Markov event sequence model (HSMESM). In a HSMESM, the observable process is no more considered as segmental in nature but issued from a detection-characterization preprocessing step. The standard markovian formalism is adapted accordingly. Results obtained in functional MRI sequence analysis validate this novel statistical modeling approach while opening new perspectives in detection-recognition of event-based random processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信