Kanwal Naz, Nimat Ullah, Anam Naz, Sidra Irum, H. Dar, Tahreem Zaheer, F. Shahid, Amjad Ali
{"title":"金黄色葡萄球菌的流行病学和泛基因组图谱及保守的新型候选疫苗抗原的鉴定","authors":"Kanwal Naz, Nimat Ullah, Anam Naz, Sidra Irum, H. Dar, Tahreem Zaheer, F. Shahid, Amjad Ali","doi":"10.2174/1570164618666210212122847","DOIUrl":null,"url":null,"abstract":"\n\n Staphylococcus aureus (S. aureus) is a gram-positive bacterium and one of the major nosocomial pathogen. It has the ability to acquire resistance against almost all available classes of antibiotics; Methicillin-Resistant S. aureus (MRSA) is a well-known antibiotic resistance. S. aureus is a globally distributed pathogen that need in-depth epidemiological and genomic level investigation for proper treatment and prevention. \n\n\n\n To explore the genomic epidemiology of S. aureus in-silico Multi Locus Sequence Typing (MLST) was carried out for 355 complete genomes. Diversity within the species was investigated through pan-genome analysis and subtractive genomic approach was employed for identification of core immunogenic targets. \n\n\n\n Epidemiological study identified 62 different sequence types (STs) of S. aureus distributed worldwide, in which ST-8, ST-5, ST-398, ST-239, and ST-30 are the most dominant STs comprising more than 50% of the isolates. The pan-genome of S. aureus is still open with 7,199 genes and there is a major contribution (80%) of MRSA strains in the S. aureus species pangenome. The core genome (2,025 genes) of S. aureus is almost stable (comprises of 72% of S. aureus genome size) while accessory and unique genes (28% of S. aureus genome size) are gradually increasing. Screening of 2,025 core genes identified putative vaccine candidates. The best scoring and dominant B-cell and T-cell epitopes were predicted out of the selected potential vaccine candidate proteins with the help of a multi-step screening procedure. \n\n\n\n We believe that the current study will provide insight into the genetic epidemiology and diversity of S. aureus and the predicted epitopes against the pathogen can be tested further for its immunological responses within the host and may provide both humoral and cellular immunity against the disease.\n","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"47 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The epidemiological and pangenome landscape of Staphylococcus aureus and identification of conserved novel candidate vaccine antigens\",\"authors\":\"Kanwal Naz, Nimat Ullah, Anam Naz, Sidra Irum, H. Dar, Tahreem Zaheer, F. Shahid, Amjad Ali\",\"doi\":\"10.2174/1570164618666210212122847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n Staphylococcus aureus (S. aureus) is a gram-positive bacterium and one of the major nosocomial pathogen. It has the ability to acquire resistance against almost all available classes of antibiotics; Methicillin-Resistant S. aureus (MRSA) is a well-known antibiotic resistance. S. aureus is a globally distributed pathogen that need in-depth epidemiological and genomic level investigation for proper treatment and prevention. \\n\\n\\n\\n To explore the genomic epidemiology of S. aureus in-silico Multi Locus Sequence Typing (MLST) was carried out for 355 complete genomes. Diversity within the species was investigated through pan-genome analysis and subtractive genomic approach was employed for identification of core immunogenic targets. \\n\\n\\n\\n Epidemiological study identified 62 different sequence types (STs) of S. aureus distributed worldwide, in which ST-8, ST-5, ST-398, ST-239, and ST-30 are the most dominant STs comprising more than 50% of the isolates. The pan-genome of S. aureus is still open with 7,199 genes and there is a major contribution (80%) of MRSA strains in the S. aureus species pangenome. The core genome (2,025 genes) of S. aureus is almost stable (comprises of 72% of S. aureus genome size) while accessory and unique genes (28% of S. aureus genome size) are gradually increasing. Screening of 2,025 core genes identified putative vaccine candidates. The best scoring and dominant B-cell and T-cell epitopes were predicted out of the selected potential vaccine candidate proteins with the help of a multi-step screening procedure. \\n\\n\\n\\n We believe that the current study will provide insight into the genetic epidemiology and diversity of S. aureus and the predicted epitopes against the pathogen can be tested further for its immunological responses within the host and may provide both humoral and cellular immunity against the disease.\\n\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1570164618666210212122847\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1570164618666210212122847","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The epidemiological and pangenome landscape of Staphylococcus aureus and identification of conserved novel candidate vaccine antigens
Staphylococcus aureus (S. aureus) is a gram-positive bacterium and one of the major nosocomial pathogen. It has the ability to acquire resistance against almost all available classes of antibiotics; Methicillin-Resistant S. aureus (MRSA) is a well-known antibiotic resistance. S. aureus is a globally distributed pathogen that need in-depth epidemiological and genomic level investigation for proper treatment and prevention.
To explore the genomic epidemiology of S. aureus in-silico Multi Locus Sequence Typing (MLST) was carried out for 355 complete genomes. Diversity within the species was investigated through pan-genome analysis and subtractive genomic approach was employed for identification of core immunogenic targets.
Epidemiological study identified 62 different sequence types (STs) of S. aureus distributed worldwide, in which ST-8, ST-5, ST-398, ST-239, and ST-30 are the most dominant STs comprising more than 50% of the isolates. The pan-genome of S. aureus is still open with 7,199 genes and there is a major contribution (80%) of MRSA strains in the S. aureus species pangenome. The core genome (2,025 genes) of S. aureus is almost stable (comprises of 72% of S. aureus genome size) while accessory and unique genes (28% of S. aureus genome size) are gradually increasing. Screening of 2,025 core genes identified putative vaccine candidates. The best scoring and dominant B-cell and T-cell epitopes were predicted out of the selected potential vaccine candidate proteins with the help of a multi-step screening procedure.
We believe that the current study will provide insight into the genetic epidemiology and diversity of S. aureus and the predicted epitopes against the pathogen can be tested further for its immunological responses within the host and may provide both humoral and cellular immunity against the disease.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.